2 resultados para cortical organization
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Cortical interneurons are characterized by their distinct morphological, physiological and biochemical properties, acting as modulators of the excitatory activity by pyramidal neurons, for example. Various studies have revealed differences in both distribution and density of this cell group throughout distinct cortical areas in several species. A particular class of interneuron closely related to cortical modulation is revealed by the immunohistochemistry for calcium binding proteins calbindin (CB), calretinina (CR) and parvalbumin (PV). Despite the growing amount of studies focusing on calcium binding proteins, the prefrontal cortex of primates remains relatively little explored, particularly in what concerns a better understanding of the organization of the inhibitory circuitry across its subdivisions. In the present study we characterized the morphology and distribution of neurons rich in calcium-binding proteins in the medial, orbital and dorsolateral areas of the prefrontal cortex of the marmoset (Callithrix jacchus). Using both morphometric and stereological techniques, we found that CR-reactive neurons (mainly double bouquet and bipolar cells) have a more complex dendritic arborization than CB-reactive (bitufted and basket cells) and PV-reactive neurons (chandelier cells). The neuronal densities of CR- and CB-reactive cells are higher in the supragranular layers (II/III) whilst PV-reactive neurons, conversely, are more concentrated in the infragranular layers (V/VI). CR-reactive neurons were the predominant group in the three regions evaluated, being most prevalent in dorsomedial region. Our findings point out to fundamental differences in the inhibitory circuitry of the different areas of the prefrontal cortex in marmoset
Resumo:
The midline/intralaminar nuclei form a remarkable group of nuclei of the medial and dorsal thalamus. The midline nuclei, in rats, comprises the paratenial nuclei (PT), paraventricular (PV), intermediodorsal (IMD), reuniens (Re) and rhomboid (Rh). The intralaminar nuclei comprises the central medial (CM), paracentral (PC), central lateral (CL) and parafascicular (PF). Such nuclei have dense serotonergic innervation originating from the brainstem, especially from the so-called ascending activation system. These nuclei, in turn, send projections to various cortical and subcortical areas, specifically to limbic areas, which suggests the important role of this neurotransmitter in the limbic circuitry. The aim of this study was to characterize the distribution pattern and morphology of serotonin fibers in the nuclei of the midline and intralaminar thalamic of rocky cavy (Kerodon rupestris), a tipical rodent from brazilizan northeast. To reach this aim we used four rock cavies adults. Following the transcardially perfusion with paraformaldehyde and brain microtomy steps was performed immunohistochemistry for serotonin (5-HT), Nissl technique and subsequent achievement and image analysis to characterize the cytoarchitecture of these nuclei and the serotonergic fibers visualized. An analysis was made of Relative Optical Density (ROD) to semi-quantify the concentration of serotonin fibers in the areas of interest. Thus, we observed a cytoarchitectonic arrangement of these nuclei similar to that found in rats. In case of fibers distribution, those immunoreactive to 5-HT were presented in a higher concentration according as ROD in the midline nuclei relative to intralaminar; Re being the core which has a higher pixel value followed by the PV , Rh, IMD and PT. In intralaminar CL showed higher pixels, followed by nuclei CM, PC and PF. The serotonergic fibers were classified as number of varicosities and axon diameter, therefore find three types of fibers distributed through this nuclear complex: fibers rugous, granular and semi-granular. In PV fibers predominated rugous; in PT fibers predominated granular; IMD, CL and PF fibers were represented by semi-granular and Re, Rh, PC and CM fibers showed granular and semi-granular. Morphological characterization of serotonergic fibers and differences in density between the nuclei may suggest different patterns of synaptic organization of this neurotransmitter beyond confirming his large repertoire functional