3 resultados para context aware
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Context-aware applications are typically dynamic and use services provided by several sources, with different quality levels. Context information qualities are expressed in terms of Quality of Context (QoC) metadata, such as precision, correctness, refreshment, and resolution. On the other hand, service qualities are expressed via Quality of Services (QoS) metadata such as response time, availability and error rate. In order to assure that an application is using services and context information that meet its requirements, it is essential to continuously monitor the metadata. For this purpose, it is needed a QoS and QoC monitoring mechanism that meet the following requirements: (i) to support measurement and monitoring of QoS and QoC metadata; (ii) to support synchronous and asynchronous operation, thus enabling the application to periodically gather the monitored metadata and also to be asynchronously notified whenever a given metadata becomes available; (iii) to use ontologies to represent information in order to avoid ambiguous interpretation. This work presents QoMonitor, a module for QoS and QoC metadata monitoring that meets the abovementioned requirement. The architecture and implementation of QoMonitor are discussed. To support asynchronous communication QoMonitor uses two protocols: JMS and Light-PubSubHubbub. In order to illustrate QoMonitor in the development of ubiquitous application it was integrated to OpenCOPI (Open COntext Platform Integration), a Middleware platform that integrates several context provision middleware. To validate QoMonitor we used two applications as proofof- concept: an oil and gas monitoring application and a healthcare application. This work also presents a validation of QoMonitor in terms of performance both in synchronous and asynchronous requests
Resumo:
Ubiquitous computing systems operate in environments where the available resources significantly change during the system operation, thus requiring adaptive and context aware mechanisms to sense changes in the environment and adapt to new execution contexts. Motivated by this requirement, a framework for developing and executing adaptive context aware applications is proposed. The PACCA framework employs aspect-oriented techniques to modularize the adaptive behavior and to keep apart the application logic from this behavior. PACCA uses abstract aspect concept to provide flexibility by addition of new adaptive concerns that extend the abstract aspect. Furthermore, PACCA has a default aspect model that considers habitual adaptive concerns in ubiquitous applications. It exploits the synergy between aspect-orientation and dynamic composition to achieve context-aware adaptation, guided by predefined policies and aim to allow software modules on demand load making possible better use of mobile devices and yours limited resources. A Development Process for the ubiquitous applications conception is also proposed and presents a set of activities that guide adaptive context-aware developer. Finally, a quantitative study evaluates the approach based on aspects and dynamic composition for the construction of ubiquitous applications based in metrics
Resumo:
Through numerous technological advances in recent years along with the popularization of computer devices, the company is moving towards a paradigm “always connected”. Computer networks are everywhere and the advent of IPv6 paves the way for the explosion of the Internet of Things. This concept enables the sharing of data between computing machines and objects of day-to-day. One of the areas placed under Internet of Things are the Vehicular Networks. However, the information generated individually for a vehicle has no large amount and does not contribute to an improvement in transit, once information has been isolated. This proposal presents the Infostructure, a system that has to facilitate the efforts and reduce costs for development of applications context-aware to high-level semantic for the scenario of Internet of Things, which allows you to manage, store and combine the data in order to generate broader context. To this end we present a reference architecture, which aims to show the major components of the Infostructure. Soon after a prototype is presented which is used to validate our work reaches the level of contextualization desired high level semantic as well as a performance evaluation, which aims to evaluate the behavior of the subsystem responsible for managing contextual information on a large amount of data. After statistical analysis is performed with the results obtained in the evaluation. Finally, the conclusions of the work and some problems such as no assurance as to the integrity of the sensory data coming Infostructure, and future work that takes into account the implementation of other modules so that we can conduct tests in real environments are presented.