3 resultados para compressibilità edometro sabbia sabbie granulometria limiti di Atterberg
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Over recent years the structural ceramics industry in Brazil has found a very favorable market for growth. However, difficulties related to productivity and product quality are partially inhibiting this possible growth. An alternative for trying to solve these problems and, thus, provide the pottery industry the feasibility of full development, is the substitution of firewood used in the burning process by natural gas. In order to contribute to this process of technological innovation, this paper studies the effect of co-use of ceramic phyllite and kaolin waste on the properties of a clay matrix, verifying the possible benefits that these raw materials can give to the final product, as well as the possibility of such materials to reduce the heat load necessary to obtain products with equal or superior quality. The study was divided into two steps: characterization of materials and study of formulations. Two clays, a phyllite and a residue of kaolin were characterized by the following techniques: laser granulometry, plasticity index by Atterberg limits, X-ray fluorescence, X-ray diffraction, mineralogical composition by Rietveld, thermogravimetric and differential thermal analysis. To study the formulations, specifically for evaluation of technological properties of the parts, was performed an experimental model that combined planning involving a mixture of three components (standard mass x phyllite x kaolin waste) and a 23 factorial design with central point associated with thermal processing parameters. The experiment was performed with restricted strip-plot randomization. In total, 13 compositional points were investigated within the following constraints: phyllite ≤ 20% by weight, kaolin waste ≤ 40% by weight, and standard mass ≥ 60% by weight. The thermal parameters were used at the following levels: 750 and 950 °C to the firing temperature, 5 and 15 °C/min at the heating rate, 15 and 45min to the baseline. The results showed that the introduction of phyllite and/or kaolin waste in ceramic body produced a number of benefits in properties of the final product, such as: decreased absorption of water, apparent porosity and linear retraction at burn; besides the increase in apparent specific mass and mechanical properties of parts. The best results were obtained in the compositional points where the sum of the levels of kaolin waste and phyllite was maximal (40% by weight), as well as conditions which were used in firing temperatures of 950 °C. Regarding the prospect of savings in heat energy required to form the desired microstructure, the phyllite and the residue of kaolin, for having small particle sizes and constitutions mineralogical phases with the presence of fluxes, contributed to the optimization of the firing cycle.
Resumo:
This work aims at studying the influence of the concentration of calcite, its grain size and sintering temperature to obtain porous coating formulations that meet the design specifications. The experiments involved the physical-chemical and mineralogical caracterization of the raw materials, and mechanical tests on specimens dried and sintered, performing a planning mixture and factorial experiment, using the response surface methodology. The ceramic bodies studied were prepared by dry process, characterized, placed in conformity by uniaxial pressing and sintered at temperatures of 940 º C, 1000ºC, 1060ºC, 1120°C and 1180°C using a fast-firing cycle. The crystalline phases formed during sintering at temperatures under study, revealed the presence of anorthite and wolastonite, and quartz-phase remaining. These phases were mainly responsible for the physical and mechanical properties of the sintered especimens. The results shown that as increases the participation of carbonate in the composition of ceramic bodies there is an increase of water absorption and a slight reduction in linear shrinkage for all sintering temperatures. As for the mechanical strength it was observed that it tended to decrease for sintering at temperatures between 940 ° C and 1060 ° C and to increase for sintering at temperatures above 1060 ° C occurring with greater intensity for compositions with higher content of calcite. The resistence decreased with increasing participation of quartz in all sintering temperatures. The decrease in grain size of calcite caused a slight increase in water absorption for formulation with the same concentration of carbonate, remaining virtually unchanged the results of linear shrinkage and mechanical strength. In conclusion, porous ceramic coating (BIII) can be obtained using high concentrations of calcite and keeping the properties required in technical standards and that the particle size of calcite can be used as tuning parameter for the properties of ceramic products.
Resumo:
O método de combinação de Nelson-Oppen permite que vários procedimentos de decisão, cada um projetado para uma teoria específica, possam ser combinados para inferir sobre teorias mais abrangentes, através do princípio de propagação de igualdades. Provadores de teorema baseados neste modelo são beneficiados por sua característica modular e podem evoluir mais facilmente, incrementalmente. Difference logic é uma subteoria da aritmética linear. Ela é formada por constraints do tipo x − y ≤ c, onde x e y são variáveis e c é uma constante. Difference logic é muito comum em vários problemas, como circuitos digitais, agendamento, sistemas temporais, etc. e se apresenta predominante em vários outros casos. Difference logic ainda se caracteriza por ser modelada usando teoria dos grafos. Isto permite que vários algoritmos eficientes e conhecidos da teoria de grafos possam ser utilizados. Um procedimento de decisão para difference logic é capaz de induzir sobre milhares de constraints. Um procedimento de decisão para a teoria de difference logic tem como objetivo principal informar se um conjunto de constraints de difference logic é satisfatível (as variáveis podem assumir valores que tornam o conjunto consistente) ou não. Além disso, para funcionar em um modelo de combinação baseado em Nelson-Oppen, o procedimento de decisão precisa ter outras funcionalidades, como geração de igualdade de variáveis, prova de inconsistência, premissas, etc. Este trabalho apresenta um procedimento de decisão para a teoria de difference logic dentro de uma arquitetura baseada no método de combinação de Nelson-Oppen. O trabalho foi realizado integrando-se ao provador haRVey, de onde foi possível observar o seu funcionamento. Detalhes de implementação e testes experimentais são relatados