65 resultados para compostos orgânicos

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the potentially polluting economic activities that compromise the quality of groundwater are the gas stations. The city of Natal has about 120 gas stations, of which only has an environmental license for operation. Discontinuities in the offices were notified by the Public Ministry of Rio Grande do Norte to carry out the environmental adaptations, among which is the investigation of environmental liabilities. The preliminary and confirmatory stages of this investigation consisted in the evaluation of soil gas surveys with two confirmatory chemical analysis of BTEX, PAH and TPH. To get a good evaluation and interpretation of results obtained in the field, it became necessary three-dimensional representation of them. We used a CAD software to graph the equipment installed in a retail service station fuel in Natal, as well as the plumes of contamination by volatile organic compounds. The tool was concluded that contamination is not located in the current system of underground storage of fuel development, but reflects the historical past in which tanks were removed not tight gasoline and diesel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oil and petrochemical industry is responsable to generate a large amount of waste and wastewater. Among some efluents, is possible find the benzene, toluene, ethilbenze and isomers of xilenes compounds, known as BTEX. These compounds are very volatily, toxic for environment and potencially cancerigenous in man. Oxidative advanced processes, OAP, are unconventional waste treatment, wich may be apply on treatment and remotion this compounds. Fenton is a type of OAPs, wich uses the Fenton s reactant, hydrogen peroxide and ferrous salt, to promove the organic degradation. While the Photo-Fenton type uses the Fenton s reactant plus UV radiation (ultraviolet). These two types of OAP, according to literature, may be apply on BTEX complex system. This project consists on the consideration of the utilization of technologies Fenton and Photo-Fenton in aqueous solution in concentration of 100 ppm of BTEX, each, on simulation of condition near of petrochemical effluents. Different reactors were used for each type of OAP. For the analyticals results of amount of remotion were used the SPME technique (solid phase microextraction) for extraction in gaseous phase of these analytes and the gas chromatography/mass espectrometry The arrangement mechanical of Photo-Fenton system has been shown big loss by volatilization of these compounds. The Fenton system has been shown capable of degradate benzene and toluene compounds, with massic percentage of remotion near the 99%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innovative technologies using surfactant materials have applicability in several industrial fields, including petroleum and gas areas. This study seeks to investigate the use of a surfactant derived from coconut oil (SCO saponified coconut oil) in the recovery process of organic compounds that are present in oily effluents from petroleum industry. For this end, experiments were accomplished in a column of small dimension objectifying to verify the influence of the surfactant SCO in the efficiency of oil removal. This way, they were prepared emulsions with amount it fastens of oil (50, 100, 200 and 400 ppm), being determined the great concentrations of surfactant for each one of them. Some rehearsals were still accomplished with produced water of the industry of the petroleum to compare the result with the one of the emulsions. According to the experiments, it was verified that an increase of the surfactant concentration does not implicate in a greater oil removal. The separation process use gaseous bubbles formed when a gas stream pass a liquid column, when low surfactant concentrations are used, it occurs the coalescence of the dispersed oil droplets and their transport to the top of the column, forming a new continuous phase. Such surfactants lead to a gas-liquid interface saturation, depending on the used surfactant concentration, affecting the flotation process and influencing in the removal capacity of the oily dispersed phase. A porous plate filter, with pore size varying from 40 to 250 mm, was placed at the base of the column to allow a hydrodynamic stable operation. During the experimental procedures, the operating volume of phase liquid was held constant and the rate of air flow varied in each experiment. The resulting experimental of the study hydrodynamic demonstrated what the capturing of the oil was influenced by diameter of the bubbles and air flow. With the increase flow of 300 about to 900 cm3.min-1, occurred an increase in the removal of oil phase of 44% about to 66% and the removal kinetic of oil was defined as a reaction of 1° order

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, biological purification of gaseous waste has become an important alternative to many conventional methods of exhaust air treatment. More recently, biofiltration has proved to be an effective and inexpensive method for the treatment of air contaminated with volatile organic compounds (VOCs). A biofilter consists in a reactor packed with a porous solid bed material, where the microorganisms are fixed. During the biofiltration process, polluted air is transported through the biofilter medium where the contaminant is degraded. Within the biofilm, the pollutants in the waste gases are energy and carbon sources for microbial metabolism and are transformed into CO2, water and biomass. The bed material should be characterized by satisfactory mechanical and physical properties as structure, void fraction, specific area and flow resistance. The aim of this research was the biofilter construction and study of the biological degradation of ethanol and toluene, as well as the modeling of the process. Luffa cylindrica is a brazilian fiber that was used as the filtering material of the present work. The parameters and conditions studied were: composition of nutrients solution; effect of microflorae strains, namely Pseudomanas putida and Rhodococcus rhodochrous; waste gas composition; air flow rate; and inlet load of VOCs. The biofilter operated in diffusion regime and the best results for remotion capacity were obtained when a microorganisms consortion of Pseudomanas putida and Rhodococcus rhodochrous,were used, with a gas flow rate of 1 m3.h-1 and molar ratio nitrogene/phosphore N/P=2 in the nutrients solution. The maximum remotion capacity for ethanol was around 90 g.m-3.h-1 and 50 g.m-3.h-1 to toluene. It was proved that toluene has inhibitory effect on the ethanol remotion When the two VOCs were present in the same waste gas, there was a decrease of 40% in ethanol remotion capacity. Luffa cylindrica does not present considerable pressure drop. Ottengraf and van Lith models were used to represent the results obtained for ethanol and toluene, respectively. The application of the transient model indicated a satisfactory approximation between the experimental results obtained for ethanol and toluene vapors biofiltration and the ones predicted it

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The groundwater pollution arising due to fuel leaks gas stations has presented a problem aggravating. Increasingly studies related to environmental problems such accidents and seek to propose some solutions for the treatment of groundwater and soils that are contaminated by gasoline. This study evaluated the use of molecular sieve TiSBA-15 as a catalyst for the reaction of removing of volatile organic compounds, particularly benzene, toluene, ethylbenzene and xylenes, known as BTEX, one of the main pollutants found in groundwater. The catalyst was synthesized by the method post-synthesis techniques and characterized by XSD, TG/DTG, adsorption/desorption of N2, XRF-EDX, for checking the incorporation of titanium and formation of the structure of the catalyst. The reaction occurred with the presence of hydrogen peroxide, H2O2, in aqueous medium to form hydroxyl radicals, which are needed in the process of removal of BTEX compounds. The catalytic reaction was carried out for 5 hours at 60 °C, pH to 3.0, and analyzes of the compounds were made in a gas chromatograph with a flame detection means photoionization static headspace (HS-GC-PID). The catalytic tests have shown the efficacy of using this type of catalyst for the removal of these volatile organic compounds, having a removal rate of 90.60% in the range where the catalyst was studied TiSBA-15(5,0)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innovative technologies using surfactant materials have applicability in several industrial fields, including petroleum and gas areas. This study seeks to investigate the use of a surfactant derived from coconut oil (SCO saponified coconut oil) in the recovery process of organic compounds that are present in oily effluents from petroleum industry. For this end, experiments were accomplished in a column of small dimension objectifying to verify the influence of the surfactant SCO in the efficiency of oil removal. This way, they were prepared emulsions with amount it fastens of oil (50, 100, 200 and 400 ppm), being determined the great concentrations of surfactant for each one of them. Some rehearsals were still accomplished with produced water of the industry of the petroleum to compare the result with the one of the emulsions. According to the experiments, it was verified that an increase of the surfactant concentration does not implicate in a greater oil removal. The separation process use gaseous bubbles formed when a gas stream pass a liquid column, when low surfactant concentrations are used, it occurs the coalescence of the dispersed oil droplets and their transport to the top of the column, forming a new continuous phase. Such surfactants lead to a gas-liquid interface saturation, depending on the used surfactant concentration, affecting the flotation process and influencing in the removal capacity of the oily dispersed phase. A porous plate filter, with pore size varying from 40 to 250 mm, was placed at the base of the column to allow a hydrodynamic stable operation. During the experimental procedures, the operating volume of phase liquid was held constant and the rate of air flow varied in each experiment. The resulting experimental of the study hydrodynamic demonstrated what the capturing of the oil was influenced by diameter of the bubbles and air flow. With the increase flow of 300 about to 900 cm3.min-1, occurred an increase in the removal of oil phase of 44% about to 66% and the removal kinetic of oil was defined as a reaction of 1° order.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistics of environmental protection agencies show that the soil has been contaminated with problems often resulting from leaks, spills and accidents during exploration, refining, transportation and storage oil operations and its derivatives. These, gasoline noteworthy, verified by releasing, to get in touch with the groundwater, the compounds BTEX (benzene, toluene, ethylbenzene and xylenes), substances which are central nervous system depressants and causing leukemia. Among the processes used in remediation of soil and groundwater contaminated with organic pollutants, we highlight those that use hydrogen peroxide because they are characterized by the rapid generation of chemical species of high oxidation power, especially the hydroxyl radical ( OH), superoxide (O2 -) and peridroxil (HO2 ), among other reactive species that are capable of transforming or decomposing organic chemicals. The pH has a strong effect on the chemistry of hydrogen peroxide because the formation of different radicals directly depends on the pH of the medium. In this work, the materials MCM-41 and Co-MCM-41 were synthesized and used in the reaction of BTEX removal in aqueous media using H2O2. These materials were synthesized by the hydrothermal method and the techniques used to characterize were: XRD, TG/DTG, adsorption/desorption N2, TEM and X-Ray Fluorescence. The catalytic tests were for 5 h of reaction were carried out in reactors of 20 mL, which was accompanied by the decomposition of hydrogen peroxide by molecular absorption spectrophotometry in the UV-Vis, in addition to removal of organic compounds BTEX was performed as gas chromatography with detection photoionization and flame ionization and by static headspace sampler. The characterizations proved that the materials were successfully synthesized. The catalytic tests showed satisfactory results, and the reactions containing BTEX + Co-MCM-41 + H2O2 at pH = 12.0 had the highest percentages of removal for the compounds studied

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the potentially polluting economic activities that compromise the quality of groundwater are the gas stations. The city of Natal has about 120 gas stations, of which only has an environmental license for operation. Discontinuities in the offices were notified by the Public Ministry of Rio Grande do Norte to carry out the environmental adaptations, among which is the investigation of environmental liabilities. The preliminary and confirmatory stages of this investigation consisted in the evaluation of soil gas surveys with two confirmatory chemical analysis of BTEX, PAH and TPH. To get a good evaluation and interpretation of results obtained in the field, it became necessary three-dimensional representation of them. We used a CAD software to graph the equipment installed in a retail service station fuel in Natal, as well as the plumes of contamination by volatile organic compounds. The tool was concluded that contamination is not located in the current system of underground storage of fuel development, but reflects the historical past in which tanks were removed not tight gasoline and diesel

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Textile production has been considered as an activity of high environmental impact due to the generation of large volumes of waste water with high load of organic compounds and strongly colored effluents, toxic and difficult biodegradability. This thesis deals with obtaining porous alumina ceramic membranes for filtration of textile effluent in the removal of contaminants, mainly color and turbidity. Two types of alumina with different particle sizes as a basis for the preparation of formulation for mass production of ceramic samples and membranes. The technological properties of the samples were evaluated after using sintering conditions: 1,350ºC-2H, 1,450ºC-30M, 1,450ºC-2H, 1,475ºC-30M and 1,475ºC-2H. The sintered samples were characterized by XRD, XRF, AG, TG, DSC, DL, AA, MEA, RL, MRF-3P, SEM and Intrusion Porosimetry by Mercury. After the characterization, a standard membrane was selected with their respective sintering condition for the filterability tests. The effluent was provided by a local Textile Industry and characterized at the entry and exit of the treatment plant. A statistical analysis was used to study the effluent using the following parameters: pH, temperature, EC, SS, SD, oil and grease, turbidity, COD, DO, total phosphorus, chlorides, phenols, metals and fecal coliform. The filtered effluent was evaluated by using the same parameters. These results demonstrate that the feasibility of the use of porous alumina ceramic membranes for removing contaminants from textile effluent with improved average pore size of 0.4 micrometre (distribution range varying from 0,025 to 2.0 micrometre), with total porosity of 29.66%, and average percentages of color removal efficiency of 89.02%, 92.49% of SS, turbidity of 94.55%, metals 2.70% (manganese) to 71.52% (iron) according to each metal and COD removal of 72.80%

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The produced water is a byproduct formed due to production of petroleum and carries with it a high amount of contaminants such as oil particles in suspension, organic compounds and metals. Thus, these latter pollutants are very difficult to treat because of its high solubility in water. The objective of this work is to use and evaluate a microemulsioned system to remove metals ( K , Mg , Ba , Ca , Cr , Mn , Li , Fe ) of synthetic produced water. For the extraction of metals, it was used a pseudoternary diagram containing the following phases: synthetic produced water as the aqueous phase (AP), hexane as organic phase (OP), and a cosurfactant/surfactant ratio equal to four (C/S = 4) as the third phase, where the OCS (saponified coconut oil) was used as surfactant and n-butanol as cosurfactant. The synthetic produced water was prepared in a bench scale and the region of interest in the diagram for the removal of metals was determined by experimental design called. Ten points located in the phase Winsor II were selected in an area with a large amount of water and small amounts of reagents. The samples were analyzed in atomic absorption spectrometer, and the results were evaluated through a statistical assesment, allowing the efficiency analysis of the effects and their interactions. The results showed percentages of extraction above 90% for the metals manganese, iron, chromium, calcium, barium and magnesium, and around 45% for metals lithium and potassium. The optimal point for the simultaneous removal of metals was calculated using statistical artifact multiple response function (MR). This calculation showed that the point of greatest extraction of metals occurs was the J point, with the composition [72% AP, 9% OP, 19% C/S], obtaining a global extraction percentage about 80%. Considering the aspects analyzed, the microemulsioned system has shown itself to be an effective alternative in the extraction of metals on synthetic produced water remediation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionic liquids (ILs) are organic compounds liquid at room temperature, good electrical conductors, with the potential to form as a means for electrolyte on electrolysis of water, in which the electrodes would not be subjected to such extreme conditions demanding chemistry [1]. This paper describes the synthesis, characterization and study of the feasibility of ionic liquid ionic liquid 1-methyl-3(2,6-(S)-dimethyloct-2-ene)-imidazole tetrafluoroborate (MDI-BF4) as electrolyte to produce hydrogen through electrolysis of water. The MDI-BF4 synthesized was characterized by thermal methods of analysis (Thermogravimetric Analysis - TG and Differential Scanning Calorimetry - DSC), mid-infrared spectroscopy with Fourier transform by method of attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy of hydrogen (NMR 1H) and cyclic voltammetry (CV). Where thermal methods were used to calculate the yield of the synthesis of MDI-BF4 which was 88.84%, characterized infrared spectroscopy functional groups of the compound and the binding B-F 1053 cm-1; the NMR 1H analyzed and compared with literature data defines the structure of MDI-BF4 and the current density achieved by MDI-BF4 in the voltammogram shows that the LI can conduct electrical current indicating that the MDI-BF4 is a good electrolyte, and that their behavior does not change with the increasing concentration of water

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, biodiesel was produced from castor oil that was a byproduct glycerin. The molar ratio between oil and alcohol, as well as the use of (KOH) catalyst to provide the chemical reaction is based on literature. The best results were obtained using 1 mol of castor oil (260g) to 3 moles of methyl alcohol (138g), using 1.0% KOH as catalyst at a temperature of 260 ° C and shaken at 120 rpm. The oil used was commercially available, the process involves the reaction of transesterification of a vegetable oil with methyl alcohol. The product of this reaction is an ester, biodiesel being the main product and the glycerin by-product which has undergone treatment for use as raw material for the production of allyl alcohol. The great advantage of the use of glycerin to obtain allyl alcohol is that its use eliminates the large amount of waste of the biodiesel and various forms of insult to the environment. The reactions for the formation of allyl alcohol was conducted from formic acid and glycerin in a ratio 1/1, at a temperature of 260oC in a heater blanket, being sprayed by a spiral condenser for a period of 2 hours and the product obtained contains mostly the allylic alcohol .. The monitoring of reactions was performed by UV-Visible Spectrophotometer: FTIR Fourier transform, the analysis showed that these changes occur spectrometer indicating the formation of the product allylic alcohol (prop-2-en-1-ol) in the presence of water, This alcohol was appointed Alcohol GL. The absorption bands confirms that the reaction was observed in (υ C = C) 1470 -1600 cm -1 and (υ CO), 3610-3670 attributed to C = C groups and OH respectively. The thermal analysis was carried out in a thermogravimetric analyzer SDT Q600, where the mass and temperature are displayed against time, that allows checking the approximate rate of heating. The innovative methodology developed in the laboratory (LABTAM, UFRN), was able to treat the glycerine produced by transesterification of castor oil and used as raw material for production of allyl alcohol, with a yield of 80%, of alcohol, the same is of great importance in the manufacture of polymers, pharmaceuticals, organic compounds, herbicides, pesticides and other chemicals

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Licania rigida Benth., Licania tomentosa (Benth.) Fritsch, and Couepia impressa Prance (Chrysobalanaceae family) plants have long been used medicinally by the people from Northeastern Brazil. Crude extracts and infusions of these plants have been applied in the treatment of several conditions such as diabetes and rheumatism, degenerative diseases with involvement of reactive oxygen species (ROS). The aim of this study was to evaluate the aqueous, ethanolic, and hydroethanolic leaves extracts antioxidant capacity of these species, using several in vitro assay systems (reducing power, DPPH● scavenging, the β-carotene linoleate model system and lipid peroxidation inhibition in rat brain homogenate, using thiobarbituric acid reactive substances - TBARS). The oral acute toxicity of aqueous extracts was also evaluated in vivo. Results revealed that these extracts possess a potent reducing power and DPPH scavenging ability, as well as the ability to prevent TBARS formation in rat brain homogenate in a concentration-dependent manner. Regarding in vivo oral acute toxicity of the aqueous species extracts, no toxic effects were observed upon evaluating physiological, hematological and biochemical parameters. The presence of high levels of phenolics and flavonoids was determined mainly in the ethanol extract. However, the C. impressa hydroethanolic extract, fractionated with hexane, chloroform and ethyl acetate for analysis by NMR 1H, showed more efficient results than the reference antioxidant Carduus marianus. The classes of organics compounds were determined were phenolics in the fraction of ethyl acetate and terpenes in chloroform and hexane fractions. The ethil acetate fraction had the highest content of flavonoids and increased scavenging capacity of DPPH●, possibly by the presence of phenolic compounds. Therefore, a detailed investigation of the phytochemical composition and in vivo study of the C. impressa hydroethanolic extract is suggested to characterize the active compounds of the species

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With water pollution increment at the last years, so many progresses in researches about treatment of contaminated waters have been developed. In wastewaters containing highly toxic organic compounds, which the biological treatment cannot be applied, the Advanced Oxidation Processes (AOP) is an alternative for degradation of nonbiodegradable and toxic organic substances, because theses processes are generation of hydroxyl radical based on, a highly reactivate substance, with ability to degradate practically all classes of organic compounds. In general, the AOP request use of special ultraviolet (UV) lamps into the reactors. These lamps present a high electric power demand, consisting one of the largest problems for the application of these processes in industrial scale. This work involves the development of a new photochemistry reactor composed of 12 low cost black light fluorescent lamps (SYLVANIA, black light, 40 W) as UV radiation source. The studied process was the photo-Fenton system, a combination of ferrous ions, hydrogen peroxide, and UV radiation, it has been employed for the degradation of a synthetic wastewater containing phenol as pollutant model, one of the main pollutants in the petroleum industry. Preliminary experiments were carrier on to estimate operational conditions of the reactor, besides the effects of the intensity of radiation source and lamp distribution into the reactor. Samples were collected during the experiments and analyzed for determining to dissolved organic carbon (DOC) content, using a TOC analyzer Shimadzu 5000A. The High Performance Liquid Chromatography (HPLC) was also used for identification of the cathecol and hydroquinone formed during the degradation process of the phenol. The actinometry indicated 9,06⋅1018 foton⋅s-1 of photons flow, for 12 actived lamps. A factorial experimental design was elaborated which it was possible to evaluate the influence of the reactants concentration (Fe2+ and H2O2) and to determine the most favorable experimental conditions ([Fe2+] = 1,6 mM and [H2O2] = 150,5 mM). It was verified the increase of ferrous ions concentration is favorable to process until reaching a limit when the increase of ferrous ions presents a negative effect. The H2O2 exhibited a positive effect, however, in high concentrations, reaching a maximum ratio degradation. The mathematical modeling of the process was accomplished using the artificial neural network technique