3 resultados para coastal environments

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study area consist in high sensitivity environments located on the northern coast of Rio Grande do Norte, Northeast Brazil. The barrier island are the main geomorphological features on the coastal landscape, being naturally instable and surrounded by industrial activities like oil fields, salt industry, shrimp farms and urban areas sometimes installed parallel to the coast, combined with coast engineering interventions. High energy hydrodynamic process are responsible for the morphological instability of the coast. The study was based on remote sensing data obtained between 1954 and 2007 which consist in orbital images from Landsat, CBERS and Ikonos satellites and aerial photos. With all data integrated on GIS environment it was possible to update thematic maps of geology, geomorphology, vegetation, soil and landuse and development of multitemporal maps pointing areas with erosion and depositions of sediments, defining the critical erosion process on this region. The bigger morphological changes are related to changes on wind patterns during the year, terrestrial and sea breezes during the day, with spits and barrier island migration, opening and closing of channels like the one parallel to the coast on the area of Serra and Macau oil fields. These factors combined with the significant reduction on sediment budgets due to the loss of natural spaces to sediment reworking contribute to the low resilience which tends to be growing on the area of Serra and Macau oil fields. In front of such scenery a detailed monitoring was done in order to find technological possibilities for coastal restoration. A pilot area was defined to start the project of mangrove restore together with beach nourishment in order to minimize the effect of the erosion caused by the channel parallel to the coast, contributing to stabilize the northeast channel as the main one. It s expected that such methodology will aid the coastal environments restoration and the balance between industrial activities and coastal erosion

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estuaries are coastal environments ephemeral life in geological time, derived from the drowning of the shoreline as a function of elevation relative sea level. Such parallel systems is characterized by having two sources of sediment, the river and the sea. The study area comprises the Acu River estuary, located on the northern coast of Rio Grande do Norte State, in a region of intense economic activity, mainly focused on the exploration of oil onshore and offshore, likely to accidental spills. In the oil sector are developed for salt production, shrimp farming, agriculture, fisheries and tourism, which by interacting with sensitive ecosystems, such as estuaries, may alter the natural conditions, thus making it an area susceptible to contamination is essential in understanding the morphodynamic variables that occur in this environment to obtain an environmental license. Information about the submarine relief the estuaries are of great importance for the planning of the activity of environmental monitoring, development and coastal systems, among others, allowing an easy management of risk areas, and assist in the creation of thematic maps of the main aspects of landscape. Morphodynamic studies were performed in this estuary in different seasonal periods in 2009 to observe and quantify morphological changes that have occurred and relate these to the hydrodynamic forcing from the river and its interaction with the tides. Thus, efforts in this area is possible to know the bottom morphology through records of good quality equipment acquired by high resolution geophysical (side-scan sonar and profiler current by doppler effect). The combination of these data enabled the identification of different forms of bed for the winter and summer that were framed in a lower flow regime and later may have been destroyed or modified forms of generating fund scheme than the number according Froude, with different characteristics due mainly to the variation of the depth and type of sedimentary material they are made, and other hydrodynamic parameters. Thus, these features background regions are printed in the channel, sandy banks and muddy plains that border the entire area

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The longshore sediment transport (LST) is determinant for the occurrence of morphological changes in coastal environments. Understanding their movement mechanisms and transport is an essential source of information for the project design and coastal management plans. This study aims to characterize, initially, the active hydrodynamic circulation in the study area, comprised of four beach sectors from the south coast of Natal, assessing the average annual LST obtained through three proven equations (CERC, Kamphuis and Bayram et al.), defining the best formulation for the study area in question, and analyze the seasonal variability and the decadal transport evolution. The coastal area selected for this work constitutes one of the main tourist corridors in the city, but has suffered serious damage resulting from associated effects of hydrodynamic forcings and their disorderly occupation. As a tool was used the Coastal Modelling System of Brazil (SMC-Brazil), which presents integrated a series of numerical models and a database, properly calibrated and validated for use in developing projects along the Brazilian coastline. The LST rates were obtained for 15 beach profiles distributed throughout the study area. Their extensions take into account the depth of closure calculated by Harllermeier equation, and regarding the physical properties of the sediment, typical values of sandy beaches were adopted, except for the average diameter, which was calculated through an optimization algorithm based on equilibrium profile formulation proposed by Dean. Overall, the results showed an intensification of hydrodynamic forcings under extreme sea wave conditions, especially along the headlands exist in the region. Among the analyzed equations, Bayram et al. was the most suitable for this type of application, with a predominant transport in the south-north direction and the highest rates within the order of 700.000 m3 /year to 2.000.000 m3 /year. The seasonal analysis also indicated a longitudinal transport predominance in the south to north, with the highest rates associated with the fall and winter seasons. In these periods are observed erosive beach states, which indicate a direct relationship between the sediment dynamics and the occurrence of more energetic sea states. Regarding the decadal evolution of transportation, it was found a decrease in transport rate from the 50’s to the 70’s, followed by an increase until the 2000’s, coinciding with the beginning of urbanization process in some stretches of the studied coastline.