3 resultados para chemotaxis

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chromobacterium violaceum is a β-proteobacterium Gram-negative widely found in tropical and subtropical regions, whose genome was sequenced in 2003 showing great metabolic versatility and biotechnological and pharmaceutical potential. Given the large number of ORFs related to iron metabolism described in the genome of C. violaceum, the importance of this metal for various biological processes and due to lack of data about the consequences of excess of iron in free-living organisms, it is important to study the response mechanism of this bacterium in a culture filled with iron. Previous work showed that C. violaceum is resistant to high concentrations of this metal, but has not yet been described the mechanism which is used to this survival. Thus, to elucidate the response of C. violaceum cultured in high concentrations of iron and expecting to obtain candidate genes for use in bioremediation processes, this study used a shotgun proteomics approach and systems biology to assess the response of C. violaceum grown in the presence and absence of 9 mM of iron. The analysis identified 531 proteins, being 71 exclusively expressed by the bacteria grown in the presence of the metal and 100 just in the control condition. The increase in expression of proteins related to the TCA cycle possibly represents a metabolic reprogramming of the bacteria caused by high concentration of iron in the medium. Moreover, we observed an increase in the activity assay of superoxide dismutase and catalase as well as in Total Antioxidant Activity assay, suggesting that the metal is inducing oxidative stress in C. violaceum that increases the levels of violacein and antioxidant enzymes to better adapt to the emerging conditions. Are also part of the adaptive response changes in expression of proteins related to transport, including iron, as well as an increased expression of proteins related to chemotaxis response, which would lead the bacteria to change the direction of its movement away from the metal. Systems Biology results, also suggest a metabolic reprogramming with mechanisms coordinated by bottleneck proteins involved in transcription (GreA), energy metabolism (Rpe and TpiA) and methylation (AhcY)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A galactose and sucrose specific lectin from the marine sponge Cliona varians named CvL was purified by acetone fractionation followed by Sepharose CL 4B affinity chromatography. Models of leukocyte migration in vivo were used to study the inflammatory activity of CvL through of mouse paw oedema and peritonitis. Effect of CvL on peritoneal macrophage activation was analyzed. Effects of corticoids and NSAIDS drugs were also evaluated on peritonitis stimulated by CvL. Results showed that mouse hind-paw oedema induced by sub plantar injections of CvL was dependent dose until 50µg/paw. This CvL dose when administered into mouse peritoneal cavities induced maxima cell migration (9283 cells/µL) at 24 hours after injection. This effect was preferentially inhibited by incubation of CvL with the carbohydrates D-galactose followed by sucrose. Pre-treatment of mice with 3% thioglycolate increases the peritoneal macrophage population 2.3 times, and enhanced the neutrophil migration after 24h CvL injection (75.8%, p<0.001) and no significant effect was observed in presence of fMLP. Finally, Pre-treatment of mice with dexamethason (cytokine antagonist) decreased 65.6%, (p<0.001), with diclofenac (non-selective NSAID) decreased 34.5%, (p<0.001) and Celecoxib (selective NSAID) had no effect on leukocyte migration after submission at peritonitis stimulated by CvL, respectively. Summarizing, data suggest that CvL shows pro-inflammatory activity, inducing neutrophil migration probably by pathway on resident macrophage activation and on chemotaxis mediated by cytokines

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chromobacterium violaceum is a β-proteobacterium Gram-negative widely found in tropical and subtropical regions, whose genome was sequenced in 2003 showing great metabolic versatility and biotechnological and pharmaceutical potential. Given the large number of ORFs related to iron metabolism described in the genome of C. violaceum, the importance of this metal for various biological processes and due to lack of data about the consequences of excess of iron in free-living organisms, it is important to study the response mechanism of this bacterium in a culture filled with iron. Previous work showed that C. violaceum is resistant to high concentrations of this metal, but has not yet been described the mechanism which is used to this survival. Thus, to elucidate the response of C. violaceum cultured in high concentrations of iron and expecting to obtain candidate genes for use in bioremediation processes, this study used a shotgun proteomics approach and systems biology to assess the response of C. violaceum grown in the presence and absence of 9 mM of iron. The analysis identified 531 proteins, being 71 exclusively expressed by the bacteria grown in the presence of the metal and 100 just in the control condition. The increase in expression of proteins related to the TCA cycle possibly represents a metabolic reprogramming of the bacteria caused by high concentration of iron in the medium. Moreover, we observed an increase in the activity assay of superoxide dismutase and catalase as well as in Total Antioxidant Activity assay, suggesting that the metal is inducing oxidative stress in C. violaceum that increases the levels of violacein and antioxidant enzymes to better adapt to the emerging conditions. Are also part of the adaptive response changes in expression of proteins related to transport, including iron, as well as an increased expression of proteins related to chemotaxis response, which would lead the bacteria to change the direction of its movement away from the metal. Systems Biology results, also suggest a metabolic reprogramming with mechanisms coordinated by bottleneck proteins involved in transcription (GreA), energy metabolism (Rpe and TpiA) and methylation (AhcY)