8 resultados para catalase inhibitor
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The plants are often exposed to variations in environmental conditions that may trigger metabolic disturbances leading to a consequent loss in productivity of crops. These stressful conditions usually induce an accumulation of reactive oxygen species (ROS) in the cell, a condition known how oxidative stress. Among these species, hydrogen peroxide (H2O2) is an important molecule involved in numerous signaling mechanisms. The present study aimed to understand the relationship between the different enzymatic mechanisms of elimination of H2O2 by catalase (CAT) and ascorbate peroxidase (APX) in leaf tissues of seedlings of the species Vigna unguiculata L. Walp, under conditions of oxidative stress induced by application of CAT inhibitor, 3-amino-1,2,4-triazole (3-AT), and H2O2 itself on the roots. Three experiments were conducted. The first experiment was performed applying the compound 3-AT (5 mM) during the time (hours). In the second experiment, seedlings were exposed to different concentrations of H2O2 (2.5, 5.0, 7.5, 10 mM) for 48 h. The third strategy included the pre-treatment with H2O2 (2.5 mM) for 24 h, followed by subsequent treatment with the inhibitor 3-AT and recovery control condition. Treatment with 3-AT causes a strong inhibition of CAT activity in leaf tissues accompanied by an increase of activity of APX. However a decrease in oxidative damage to lipids is not observed as indicated by TBARS. It was observed that activity of APX is directly linked to the content of peroxide. Inductions in the activities of CAT and APX were observed mainly in the seedlings treated with 2.5 mM H2O2. This can be associated with a decrease in oxidative damage to lipids. In contrast, one same tendency was not observed in treatments with higher concentrations of this ROS. These results suggest that the concentration of 2.5 mM H2O2 can induce responses antioxidants later in seedling cowpea. This concentration when applied as pre-treatment for 24 h promoted an induction systems removers CAT and APX, both in activity and in terms of gene expression. However this increment was not observed in the recovered plants and the plants subsequently subjected to 3-AT. Additionally, the pretreatment was not sufficient to attenuate the inhibition of CAT activity and oxidative damage to lipids caused by the subsequent application of this inhibitor. The results showed that the application of 3-AT and H2O2 in the root systems of seedlings of cowpea promote changes in the parameters analyzed in leaf tissues that indicate a direct response to the presence of these factors or systemic signaling mecanisms. H2O2 appears to activate the responses of two antioxidant systems in this study thar does not promote greater protection in case of additional treatment with 3-AT. This demonstrates the importance of the CAT system. In this work, complete results indicate that there is a difference between the signaling and the effects caused by exposure to H2O2 and by treatment with 3-AT
Resumo:
World consumption of vegetable oils has increased in recent years because of its application in food, chemical, pharmaceutical and, more recently, energy industry. However, oilseeds, which these oils are extracted, have low viability, affecting the cultivation and productivity of these species. The aim of this study was to analyze the effect of aging on the coordination of catalase (CAT) and ascorbate peroxidase (APX) antioxidant systems in safflower and sunflower. . Therefore, seeds were subjected to accelerated aging for 3, 6 and 9 days and grown in moistened paper towel for 72 hours. Additionally, before accelerated aging, sunflower seeds were pretreated by osmopriming with 10 mM ascorbate (ASC) or 3 amino 1,2,4 triazol (3-AT), a specific inhibitor of CAT activitie. The method of artificial aging used was efficient in both species, because it caused a decrease in germination, seedling development and growth, especially in safflower. The aging caused inhibition of CAT activity for both species and to compensate for such inhibition , sunflower increased mRNA expression of this enzyme , while safflower mobilized over the activity of APX. Analysis of the expression of malate synthase and sugar content demonstrated that sunflower seeds consumes lipid reserves in quiescent state, while the safflower is more dependent on carbohydrate. Pretreatment with 3-AT inhibited CAT activity and stimulated the APX, though with ASC acted reverse on these systems. None of the treatments recovered the physiological decline aging. It is concluded that aging change the oilseeds antioxidant metabolism, despite interspecies variations in response to this process, the depletion of the CAT antioxidant system was common. Because of this we propose that the measurement of CAT activity can be used to identify aging seed lots.
Resumo:
The plants are often exposed to variations in environmental conditions that may trigger metabolic disturbances leading to a consequent loss in productivity of crops. These stressful conditions usually induce an accumulation of reactive oxygen species (ROS) in the cell, a condition known how oxidative stress. Among these species, hydrogen peroxide (H2O2) is an important molecule involved in numerous signaling mechanisms. The present study aimed to understand the relationship between the different enzymatic mechanisms of elimination of H2O2 by catalase (CAT) and ascorbate peroxidase (APX) in leaf tissues of seedlings of the species Vigna unguiculata L. Walp, under conditions of oxidative stress induced by application of CAT inhibitor, 3-amino-1,2,4-triazole (3-AT), and H2O2 itself on the roots. Three experiments were conducted. The first experiment was performed applying the compound 3-AT (5 mM) during the time (hours). In the second experiment, seedlings were exposed to different concentrations of H2O2 (2.5, 5.0, 7.5, 10 mM) for 48 h. The third strategy included the pre-treatment with H2O2 (2.5 mM) for 24 h, followed by subsequent treatment with the inhibitor 3-AT and recovery control condition. Treatment with 3-AT causes a strong inhibition of CAT activity in leaf tissues accompanied by an increase of activity of APX. However a decrease in oxidative damage to lipids is not observed as indicated by TBARS. It was observed that activity of APX is directly linked to the content of peroxide. Inductions in the activities of CAT and APX were observed mainly in the seedlings treated with 2.5 mM H2O2. This can be associated with a decrease in oxidative damage to lipids. In contrast, one same tendency was not observed in treatments with higher concentrations of this ROS. These results suggest that the concentration of 2.5 mM H2O2 can induce responses antioxidants later in seedling cowpea. This concentration when applied as pre-treatment for 24 h promoted an induction systems removers CAT and APX, both in activity and in terms of gene expression. However this increment was not observed in the recovered plants and the plants subsequently subjected to 3-AT. Additionally, the pretreatment was not sufficient to attenuate the inhibition of CAT activity and oxidative damage to lipids caused by the subsequent application of this inhibitor. The results showed that the application of 3-AT and H2O2 in the root systems of seedlings of cowpea promote changes in the parameters analyzed in leaf tissues that indicate a direct response to the presence of these factors or systemic signaling mecanisms. H2O2 appears to activate the responses of two antioxidant systems in this study thar does not promote greater protection in case of additional treatment with 3-AT. This demonstrates the importance of the CAT system. In this work, complete results indicate that there is a difference between the signaling and the effects caused by exposure to H2O2 and by treatment with 3-AT
Resumo:
GOMES, Carlos E. M. et al. Effect of trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiology and Biochemistry (Paris), v. 43, n. 12, p. 1095-1102, 2005.ISSN 0981-9428. DOI:10.1016/j.plaphy.2005.11.004.
Resumo:
Oilseeds are a high-value natural resource, due to its use as a substitute for petroleum. However, the storage time can reduce seed viability and oil quality. Therefore, scientific efforts have been made to provide a increment of storage time, germination rates and plant establishment of high-value oilseeds. The seedling establishment depends of the plant pass over the functional transition stage, characterized by a metabolic change from heterotrophic condition to autotrophic one. The storage oil mobilization is performed by β-oxidation process and the glyoxylate cycle. Also, the functional transition involves acclimation to photosynthetic condition, which generally includes the participation of antioxidant system and the reactive oxygen species, the latter are produced in various reactions of primary and secondary metabolism. In the present study, Catalase was inhibited during the functional transition of sunflower and safflower, after were performed many analyzes to elucidate the effects caused on the SOD and APX antioxidant systems. Also, were checked the changes in expression pattern of the glyoxylate cycle enzymes markers, ICL and MLS. It was observed that after CAT inhibition, the SOD and APX antioxidant systems allow the seedling establishment. Besides, was verified that both oilseeds can be accelerate the reverse mobilization and the photosynthetic establishment when Catalase activity has dramatically decreased
Resumo:
The correlation between the type 1 diabetes mellitus and oxidative stress have been described in several studies, however its underlying mechanisms are not fully elucidated. The present work aimed to evaluate the effects of four weeks of streptozootocin-induced (STZ) diabetes in the redox homeostasis of rat hepatocytes. Thus, the liver of male Wistar rats from control and diabetic groups were collected and the activity and expression of antioxidant enzymes, as well the main markers of oxidative stress and content of H2O2 in these tissues were measured. The diabetes induced the activity of superoxide dismutase (SOD) and the gene expression of its mitochondrial isoform, SOD2. However, the expression of SOD1, the cytoplasmic isoform, was reduced by this disease. The activity and expression of catalase (CAT), as well the expression of glutathione peroxidase 1 (GPX1) and peroxiredoxin 4 (PRX4) were drastically reduced in the hepatocytes of diabetics rats. Even with this debility in the peroxidases mRNA expression, the content of H2O2 was reduced in the liver of diabetics rats when compared to the control group. The diabetes caused an increase of lipid peroxidation and a decrease of protein thiol content, showing that this disease causes distinct oxidative effects in different cell biomolecules. Our results indicate that four week of diabetes induced by STZ is already enough to compromise the enzymatic antioxidant systems of the hepatocytes.
Resumo:
GOMES, Carlos E. M. et al. Effect of trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiology and Biochemistry (Paris), v. 43, n. 12, p. 1095-1102, 2005.ISSN 0981-9428. DOI:10.1016/j.plaphy.2005.11.004.
Resumo:
Oilseeds are a high-value natural resource, due to its use as a substitute for petroleum. However, the storage time can reduce seed viability and oil quality. Therefore, scientific efforts have been made to provide a increment of storage time, germination rates and plant establishment of high-value oilseeds. The seedling establishment depends of the plant pass over the functional transition stage, characterized by a metabolic change from heterotrophic condition to autotrophic one. The storage oil mobilization is performed by β-oxidation process and the glyoxylate cycle. Also, the functional transition involves acclimation to photosynthetic condition, which generally includes the participation of antioxidant system and the reactive oxygen species, the latter are produced in various reactions of primary and secondary metabolism. In the present study, Catalase was inhibited during the functional transition of sunflower and safflower, after were performed many analyzes to elucidate the effects caused on the SOD and APX antioxidant systems. Also, were checked the changes in expression pattern of the glyoxylate cycle enzymes markers, ICL and MLS. It was observed that after CAT inhibition, the SOD and APX antioxidant systems allow the seedling establishment. Besides, was verified that both oilseeds can be accelerate the reverse mobilization and the photosynthetic establishment when Catalase activity has dramatically decreased