4 resultados para canonical redundancy analysis
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The response of zooplankton assemblages to variations in the water quality of four man-made lakes, caused by eutrophication and siltation, was investigated by means of canonical correspondence analysis. Monte Carlo simulations using the CCA eingenvalues as test statistics revealed that changes in zooplankton species composition along the environmental gradients of trophic state and abiogenic turbidity were highly significant. The species Brachionus calyciflorus, Thermocyclops sp. and Argyrodiaptomus sp. were good indicators of eutrophic conditions while the species Brachionus dolabratus, Keratella tropica and Hexarthra sp. were good indicators of high turbidity due to suspended sediments. The rotifer genus Brachionus was the most species-rich taxon, comprising five species which were associated with different environmental conditions. Therefore, we tested whether this genus alone could potentially be a better biological indicator of these environmental gradients than the entire zooplankton assemblages or any other random set of five species. The ordination results show that the five Brachionus species alone did not explain better the observed pattern of environmental variation than most random sets of five species. Therefore, this genus could not be selected as a target taxon for more intensive environmental monitoring as has been previously suggested by Attayde and Bozelli (1998). Overall, our results show that changes in the water quality of man-made lakes in a tropical semi-arid region have significant effects on the structure of zooplankton assemblages that can potentially affect the functioning of these ecosystems
Resumo:
Intending to explain the extraordinary lizard coexistence levels found in Australian deserts, Morton & James (1988) figured out a hypothesis which defends that the termite diversity would bring about lizard radiation. This study aims to verify the validation of that hypothesis in Caatinga lizard assemblages. This study also objectives verifying if the termite defense mechanisms influence their consuming levels by lizards and if this pattern differs between different lizard lineages. Termites were collected using a standardized sampling protocol of termites. Besides using haphazard sampling, we collect lizards with 108 pitfall traps in each area. Intending to check the linkage between the termite and lizard assemblages, the lizard stomach contents were analyzed and then a canonical correspondence analysis was performed. The presence of nonrandom patterns of diet overlap among the lizard species was also examined. Aiming to check if the defense mechanisms of termite influence their consuming pattern by lizards it was performed a laboratory experiment where termite with different defense mechanisms were offered to lizards of two different lineages. We verified that lizard assemblages do not consume termites according to termite abundance in ecosystems. Furthermore, mean niche overlap lizard species did not differ significantly from that expected by chance. We found that termite chemical defense mechanism does influence the termite s pattern consuming by lizards. These results do not corroborate premises which support Morton & James hypothesis (1988) and point out that lizard do not chose termites based on their abundance, but, trying to avoid consuming termites which exhibit chemical defense mechanisms. This defense mechanism, however, may not be the only explanation to patterns of termite s consuming by lizards.
Resumo:
The potentially toxic cyanobacterial blooms in water bodies are spread across the globe, resulting in the loss of water quality and adverse effects on human health. In arid and semiarid regions, the hydrologic regime characterized by an annual cycle of drought and rain, change the volume and the retention time of the reservoir. Such changes affect the limnological characteristics and causing changes in composition and biomass community of cyanobacteria. The reservoir Cruzeta (Zmax = 8.7 m) is a eutrophic water supply source located in the semiarid tropical (Northeast Brazil). Raised the hypothesis that the hydrological regime of semi-arid tropical is a determining factor in the availability of resources in eutrophic water sources, which influences the composition of dominant species of cyanobacteria. The aim of this study was to analyze the changes in biomass and species composition of cyanobacteria for two annual hydrological cycles and evaluate factors drivers. The study was divided into five distinct periods (dry 2010, rain 2011, dry 2011, rain 2012, dry 2012). The dominant group found in all periods was Cyanobacteria (99% of total biomass), which contributed to the low diversity. The filamentous species Cylindrospermopsis raciborskii was present at both points in almost every study. The colonial species Microcystis panniformis and Sphaerocavum brasiliensis dominated only in periods with lower volumes of water. The diatoms contribute more to the biomass during the period of severe drought. The point near the dam (P1) had phytoplankton biomass larger than the point near the tributary (P2). The dominant species of colonial cyanobacteria lasted until the overflow in P1, and P2 this dominance was until the first rains. The redundancy analysis indicated that physical factors such as light availability and water level were the main factors driving the seasonal succession of phytoplankton. The composition of phytoplankton in spring was alternated by species of filamentous cyanobacteria in conditions of poor stability of the water column, such as Cylindrospermopsis raciborskii, and colonial species under conditions of high stability of the water column, such as Microcystis panniformis and Sphaerocavum brasiliensis. The extremes of torrential rains and severe droughts, governed by the hydrological regime of the semi-arid region led to the availability of resources in the watershed, directing the spatial and temporal dynamics of phytoplankton in the reservoir Cruzeta
Resumo:
The response of zooplankton assemblages to variations in the water quality of four man-made lakes, caused by eutrophication and siltation, was investigated by means of canonical correspondence analysis. Monte Carlo simulations using the CCA eingenvalues as test statistics revealed that changes in zooplankton species composition along the environmental gradients of trophic state and abiogenic turbidity were highly significant. The species Brachionus calyciflorus, Thermocyclops sp. and Argyrodiaptomus sp. were good indicators of eutrophic conditions while the species Brachionus dolabratus, Keratella tropica and Hexarthra sp. were good indicators of high turbidity due to suspended sediments. The rotifer genus Brachionus was the most species-rich taxon, comprising five species which were associated with different environmental conditions. Therefore, we tested whether this genus alone could potentially be a better biological indicator of these environmental gradients than the entire zooplankton assemblages or any other random set of five species. The ordination results show that the five Brachionus species alone did not explain better the observed pattern of environmental variation than most random sets of five species. Therefore, this genus could not be selected as a target taxon for more intensive environmental monitoring as has been previously suggested by Attayde and Bozelli (1998). Overall, our results show that changes in the water quality of man-made lakes in a tropical semi-arid region have significant effects on the structure of zooplankton assemblages that can potentially affect the functioning of these ecosystems