4 resultados para brain network

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epilepsies are neurological disorders characterized by recurrent and spontaneous seizures due to an abnormal electric activity in a brain network. The mesial temporal lobe epilepsy (MTLE) is the most prevalent type of epilepsy in adulthood, and it occurs frequently in association with hippocampal sclerosis. Unfortunately, not all patients benefit from pharmacological treatment (drug-resistant patients), and therefore become candidates for surgery, a procedure of high complexity and cost. Nowadays, the most common surgery is the anterior temporal lobectomy with selective amygdalohippocampectomy, a procedure standardized by anatomical markers. However, part of patients still present seizure after the procedure. Then, to increase the efficiency of this kind of procedure, it is fundamental to know the epileptic human brain in order to create new tools for auxiliary an individualized surgery procedure. The aim of this work was to identify and quantify the occurrence of epilepticform activity -such as interictal spikes (IS) and high frequency oscillations (HFO) - in electrocorticographic (ECoG) signals acutely recorded during the surgery procedure in drug-resistant patients with MTLE. The ECoG recording (32 channels at sample rate of 1 kHz) was performed in the surface of temporal lobe in three moments: without any cortical resection, after anterior temporal lobectomy and after amygdalohippocampectomy (mean duration of each record: 10 min; N = 17 patients; ethic approval #1038/03 in Research Ethic Committee of Federal University of São Paulo). The occurrence of IS and HFO was quantified automatically by MATLAB routines and validated manually. The events rate (number of events/channels) in each recording time was correlated with seizure control outcome. In 8 hours and 40 minutes of record, we identified 36,858 IS and 1.756 HFO. We observed that seizure-free outcome patients had more HFO rate before the resection than non-seizure free, however do not differentiate in relation of frequency, morphology and distribution of IS. The HFO rate in the first record was better than IS rate on prediction of seizure-free patients (IS: AUC = 57%, Sens = 70%, Spec = 71% vs HFO: AUC = 77%, Sens = 100%, Spec = 70%). We observed the same for the difference of the rate of pre and post-resection (IS: AUC = 54%, Sens = 60%, Spec = 71%; vs HFO: AUC = 84%, Sens = 100%, Spec = 80%). In this case, the algorithm identifies all seizure-free patients (N = 7) with two false positives. To conclude, we observed that the IS and HFO can be found in intra-operative ECoG record, despite the anesthesia and the short time of record. The possibility to classify the patients before any cortical resection suggest that ECoG can be important to decide the use of adjuvant pharmacological treatment or to change for tailored resection procedure. The mechanism responsible for this effect is still unknown, thus more studies are necessary to clarify the processes related to it

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SCHEFFZUK, C. , KUKUSHKA, V. , VYSSOTSKI, A. L. , DRAGUHN, A. , TORT, A. B. L. , BRANKACK, J. . Global slowing of network oscillations in mouse neocortex by diazepam. Neuropharmacology , v. 65, p. 123-133, 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ayahuasca is psychotropic beverage that has been used for ages by indigenous populations in South America, notably in the Amazon region, for religious and medicinal purposes. The tea is obtained by the decoction of leaves from the Psychotria viridis with the bark and stalk of a shrub, the Banisteriopsis caapi. The first is rich in N-N-dimethyltryptamine (DMT), which has an important and well-known hallucinogenic effect due to its agonistic action in serotonin receptors, specifically 5-HT2A. On the other hand, β-carbolines present in B. caapi, particularly harmine and harmaline, are potent monoamine oxidase inhibitors (MAOi). In addition, the tetrahydroharmine (THH), also present in B. caapi, acts as mild selective serotonin reuptake inhibitor and a weak MAOi. This unique composition induces a number of affective, sensitive, perceptual and cognitive changes in individuals under the effect of Ayahuasca. On the other hand, there is growing interest in the Default Mode Network (DMN), which has been consistently observed in functional neuroimaging studies. The key components of this network include structures in the brain midline, as the anterior medial frontal cortex, ventral medial frontal cortex, posterior cingulate cortex, precuneus, and some regions within the inferior parietal lobe and middle temporal gyrus. It has been argued that DMN participate in tasks involving self-judgments, autobiographical memory retrieval, mental simulations, thinking in perspective, meditative states, and others. In general, these tasks require an internal focus of attention, hence the conclusion that the DMN is associated with introspective mental activity. Therefore, this study aimed to evaluate by functional magnetic resonance imaging (fMRI) changes in DMN caused via the ingestion of Ayahuasca by 10 healthy subjects while submitted to two fMRI protocols: a verbal fluency task and a resting state acquisition. In general, it was observed that Ayahuasca causes a reduction in the fMRI signal in central nodes of DMN, such as the anterior cingulate cortex, the medial prefrontal cortex, the posterior cingulate cortex, precuneus and inferior parietal lobe. Furthermore, changes in connectivity patterns of the DMN were observed, especially a decrease in the functional connectivity of the precuneus. Together, these findings indicate an association between the altered state of consciousness experienced by individuals under the effect of Ayahuasca, and changes in the stream of spontaneous thoughts leading to an increased introspective mental activity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SCHEFFZUK, C. , KUKUSHKA, V. , VYSSOTSKI, A. L. , DRAGUHN, A. , TORT, A. B. L. , BRANKACK, J. . Global slowing of network oscillations in mouse neocortex by diazepam. Neuropharmacology , v. 65, p. 123-133, 2013.