6 resultados para automated thematic analysis of textual data
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This study aims to identify the social representations built on senior care health workers of Primary Care. This is an exploratory research within the subsidized social representations held in 100 Basic Health Units in the city of João Pessoa-PB, with a sample of n= 204 workers of both sexes, who agreed to participate. To collect the data used to set an interview in two parts: the first looked at the Test of Free Association of Words using the inductive stimulus "senior care". The interviews were analyzed with the help of a software for quantitative analysis of textual data ALCESTE (version 2010). The results were interpreted from the theoretical framework of social representations. The study included 178 women (87.25%) and 26 men (12.75%), working in Family Health Units in the city of João Pessoa, the majority are aged between 40-49 years of age ( 28.92%), and have higher education with 81.86%. The results of Alceste link to the term inducer six (6) where the hierarchical classes representing senior care workers as synonymous with care and attention, showing situations neglect of the elderly, for that patience is required to promote the increase of disease prevention and living with the elderly to generate humanization in health services. It is considered that the social representations of health workers on assistance to the elderly may support modeling of strategic actions in health services with health promotion programs for large groups, able to modify practices and behavior in elder care and strengthening the policy was directed at the elderly
Resumo:
We aim to understand the social representations of man's aggressive behavior from the perspective of women in situations of domestic violence. This is a descriptive, exploratory and representational study, whose methodological approach falls into the qualitative category. We chose as a scenario for research, by the Reference Center for Citizen Women (CRMC), Natal / RN. The criteria for selection of participants were women who lived/live in situations of domestic violence, with affective or relationship bonding with the assailant, in psychological and emotional positions appropriated to the reality; that are being protected or assisted by the service listed above; whose aggressor is male. We adopted as data collection instruments: questionnaire, Drawing-Story (DE) and a field diary. For analysis of textual data, we decided to use the ALCESTE software conjugated to editing analyze and initial reading. Were investigated 20 women victims of domestic violence, whose author of the attacks was the husband/partner. We identified, from the respondents, that 70% (n = 14) of men with aggressive behavior also had a family history of violence and fragile family relationships. About the physical and emotional condition of the assailant at the time of violence, 50% (n = 10) of these men, regardless the use of alcohol, had often quarrelsome and/or nervous behavior, impatient and unpredictable humor facing a setback, worry or annoyance. Regarding the nature of violence, we observed that women were victims of all types of violence, however, the psychological prevailed in 100% of cases. The corpus "Men" has three classes, whose focuses are, respectively: resignation, denounce and violence/aggression, being possible categorizing them as well: Category 1: The imprisonment of women; Category 2: Violence and its meanings; Category 3: Breaking the violent cycle. We show that the social representations of man s aggressive behavior, from the women in situations of violence, are anchored in the social roles of men in family and society, becoming a dominant model of masculinity. It is aimed, on one hand, from the reproduction of what is already known and/or experienced by male aggressors in the family, as repetitions of behavior. And on the other, present themselves as a state of illness, addiction or psychopathy
Resumo:
Until recently the use of biometrics was restricted to high-security environments and criminal identification applications, for economic and technological reasons. However, in recent years, biometric authentication has become part of daily lives of people. The large scale use of biometrics has shown that users within the system may have different degrees of accuracy. Some people may have trouble authenticating, while others may be particularly vulnerable to imitation. Recent studies have investigated and identified these types of users, giving them the names of animals: Sheep, Goats, Lambs, Wolves, Doves, Chameleons, Worms and Phantoms. The aim of this study is to evaluate the existence of these users types in a database of fingerprints and propose a new way of investigating them, based on the performance of verification between subjects samples. Once introduced some basic concepts in biometrics and fingerprint, we present the biometric menagerie and how to evaluate them.
Resumo:
Until recently the use of biometrics was restricted to high-security environments and criminal identification applications, for economic and technological reasons. However, in recent years, biometric authentication has become part of daily lives of people. The large scale use of biometrics has shown that users within the system may have different degrees of accuracy. Some people may have trouble authenticating, while others may be particularly vulnerable to imitation. Recent studies have investigated and identified these types of users, giving them the names of animals: Sheep, Goats, Lambs, Wolves, Doves, Chameleons, Worms and Phantoms. The aim of this study is to evaluate the existence of these users types in a database of fingerprints and propose a new way of investigating them, based on the performance of verification between subjects samples. Once introduced some basic concepts in biometrics and fingerprint, we present the biometric menagerie and how to evaluate them.
Resumo:
A manutenção e evolução de sistemas de software tornou-se uma tarefa bastante crítica ao longo dos últimos anos devido à diversidade e alta demanda de funcionalidades, dispositivos e usuários. Entender e analisar como novas mudanças impactam os atributos de qualidade da arquitetura de tais sistemas é um pré-requisito essencial para evitar a deterioração de sua qualidade durante sua evolução. Esta tese propõe uma abordagem automatizada para a análise de variação do atributo de qualidade de desempenho em termos de tempo de execução (tempo de resposta). Ela é implementada por um framework que adota técnicas de análise dinâmica e mineração de repositório de software para fornecer uma forma automatizada de revelar fontes potenciais – commits e issues – de variação de desempenho em cenários durante a evolução de sistemas de software. A abordagem define quatro fases: (i) preparação – escolher os cenários e preparar os releases alvos; (ii) análise dinâmica – determinar o desempenho de cenários e métodos calculando seus tempos de execução; (iii) análise de variação – processar e comparar os resultados da análise dinâmica para releases diferentes; e (iv) mineração de repositório – identificar issues e commits associados com a variação de desempenho detectada. Estudos empíricos foram realizados para avaliar a abordagem de diferentes perspectivas. Um estudo exploratório analisou a viabilidade de se aplicar a abordagem em sistemas de diferentes domínios para identificar automaticamente elementos de código fonte com variação de desempenho e as mudanças que afetaram tais elementos durante uma evolução. Esse estudo analisou três sistemas: (i) SIGAA – um sistema web para gerência acadêmica; (ii) ArgoUML – uma ferramenta de modelagem UML; e (iii) Netty – um framework para aplicações de rede. Outro estudo realizou uma análise evolucionária ao aplicar a abordagem em múltiplos releases do Netty, e dos frameworks web Wicket e Jetty. Nesse estudo foram analisados 21 releases (sete de cada sistema), totalizando 57 cenários. Em resumo, foram encontrados 14 cenários com variação significante de desempenho para Netty, 13 para Wicket e 9 para Jetty. Adicionalmente, foi obtido feedback de oito desenvolvedores desses sistemas através de um formulário online. Finalmente, no último estudo, um modelo de regressão para desempenho foi desenvolvido visando indicar propriedades de commits que são mais prováveis a causar degradação de desempenho. No geral, 997 commits foram minerados, sendo 103 recuperados de elementos de código fonte degradados e 19 de otimizados, enquanto 875 não tiveram impacto no tempo de execução. O número de dias antes de disponibilizar o release e o dia da semana se mostraram como as variáveis mais relevantes dos commits que degradam desempenho no nosso modelo. A área de característica de operação do receptor (ROC – Receiver Operating Characteristic) do modelo de regressão é 60%, o que significa que usar o modelo para decidir se um commit causará degradação ou não é 10% melhor do que uma decisão aleatória.
Resumo:
A manutenção e evolução de sistemas de software tornou-se uma tarefa bastante crítica ao longo dos últimos anos devido à diversidade e alta demanda de funcionalidades, dispositivos e usuários. Entender e analisar como novas mudanças impactam os atributos de qualidade da arquitetura de tais sistemas é um pré-requisito essencial para evitar a deterioração de sua qualidade durante sua evolução. Esta tese propõe uma abordagem automatizada para a análise de variação do atributo de qualidade de desempenho em termos de tempo de execução (tempo de resposta). Ela é implementada por um framework que adota técnicas de análise dinâmica e mineração de repositório de software para fornecer uma forma automatizada de revelar fontes potenciais – commits e issues – de variação de desempenho em cenários durante a evolução de sistemas de software. A abordagem define quatro fases: (i) preparação – escolher os cenários e preparar os releases alvos; (ii) análise dinâmica – determinar o desempenho de cenários e métodos calculando seus tempos de execução; (iii) análise de variação – processar e comparar os resultados da análise dinâmica para releases diferentes; e (iv) mineração de repositório – identificar issues e commits associados com a variação de desempenho detectada. Estudos empíricos foram realizados para avaliar a abordagem de diferentes perspectivas. Um estudo exploratório analisou a viabilidade de se aplicar a abordagem em sistemas de diferentes domínios para identificar automaticamente elementos de código fonte com variação de desempenho e as mudanças que afetaram tais elementos durante uma evolução. Esse estudo analisou três sistemas: (i) SIGAA – um sistema web para gerência acadêmica; (ii) ArgoUML – uma ferramenta de modelagem UML; e (iii) Netty – um framework para aplicações de rede. Outro estudo realizou uma análise evolucionária ao aplicar a abordagem em múltiplos releases do Netty, e dos frameworks web Wicket e Jetty. Nesse estudo foram analisados 21 releases (sete de cada sistema), totalizando 57 cenários. Em resumo, foram encontrados 14 cenários com variação significante de desempenho para Netty, 13 para Wicket e 9 para Jetty. Adicionalmente, foi obtido feedback de oito desenvolvedores desses sistemas através de um formulário online. Finalmente, no último estudo, um modelo de regressão para desempenho foi desenvolvido visando indicar propriedades de commits que são mais prováveis a causar degradação de desempenho. No geral, 997 commits foram minerados, sendo 103 recuperados de elementos de código fonte degradados e 19 de otimizados, enquanto 875 não tiveram impacto no tempo de execução. O número de dias antes de disponibilizar o release e o dia da semana se mostraram como as variáveis mais relevantes dos commits que degradam desempenho no nosso modelo. A área de característica de operação do receptor (ROC – Receiver Operating Characteristic) do modelo de regressão é 60%, o que significa que usar o modelo para decidir se um commit causará degradação ou não é 10% melhor do que uma decisão aleatória.