5 resultados para artificial soil compaction

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The detention and infiltration ponds of urban drainage system has function to protect the population from undesirable effects of floods. In general these ponds are not completly used and it potential is wasted. As it are disseminated at different places at cities it can reduce costs with water transport and permit water preservation of best quality. Some it utilities includes use in green areas irrigation, industrial among than cooling towers and boiler, soil compaction, cleaning urban road, pisciculture and fire fighting system. The quality these water is influenced by anauthorized sewage in the drainage system. This study was performed in six detention and infiltration ponds at drainage system of Natal, which aim was to verify the non-portable use these ponds on urban environment. As indirect aim would to incentive the water utilization these ponds as a water source to another uses in urban environment. These ponds represents the characteristics of detention and infiltration of Natal city and consequently of Brazil. As the water quality, the ponds presents following characteristics: three has apparently good quality, other showed intermediate condition and two had water polluted. Were performed twenty sample in each ponds and the following parameters assessed: pH, temperature, dissolved oxygen, turbidity, electrical conductivity, coliform thermotolerant, ammonia, organic nitrogen, TKN, nitrate, total phosphorus and alkalinity, bicarbonate, chloride, total hardness, calcium and magnesium hardness, total solids, TSS, TDS, COD and SAR°. To utilization on pisciculture we recommend use in ponds which presents the best quality. Only one pond presented higher pollutants and it not being appropriated for use in cooling tower. The content of solids suspension restricted the water use in all ponds in boilers. As water use in soil compaction, cleaning urban road and fire fighting system the water from these ponds are not appropriated. However, the recommended limits from literature are to domestic sewage, due to this, the parameters are restrictive to diminish the sanitary risk that could be offered with it utilization. The infiltration velocity of water these assessed ponds restrict a moderato use, however the effects are potentiated only in soil less sandy, which not occur in Natal. It is recommend the unrestricted irrigation utilization in ponds with best quality of water, and a restricted irrigation to ponds with worst quality of water. As load of pollutants, it is recommended a complementary treatment in those ponds whit higher load to diminish sanitary risks. In only one pond was found one helminth eggs and due to the convention formula of results, it was found for all ponds less than 1 helminth/liter eggs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The exceeded use of the natural resources required by the modern agriculture has been caused soil impoverishment, soil salinization and soil compaction. The unreasonable use of chemical fertilizers and pesticides causes chemical imbalances in the plant tissues, nutritional losses, taste chances and human health problems. The monocrops are more vulnerable to the pest and disease attacks. The aim of this work were to indicate the better relative planting time of the cowpea bean for the sesame/cowpea bean intercropping based on the evaluation of agronomic, economic, ecological and physiological parameters and to evaluate the viability of the cow urine and cassava wastewater use as alternative fertilizers on the sesame cultivation. In a field essay, when the sesame/cowpea bean was evaluate, the mainly treatments were the single planting of the two cultures and the multiple cropping, with the cowpea bean being planted on the same time, 7, 14 and 21 days after the sesame. The mainly treatments of the second essay were the combined doses of the cow urine (0 and 50 ml) and cassava wastewater (0, 500 and 1000 mL). In the intercrop evaluation significant differences were found between the treatments for the most of the parameters. It was verified that as the sowing of the cowpea bean was retarded in relation to the sesame sowing, the sesame performance increased when the cowpea bean performance decreased. The treatment 7 days balanced the competition relations that occurred between the two crops in the intercrop. The sesame presented little pronounced responses to the different doses of cassava wastewater. The cow urine affected the sesame growth and the growth rates increased with the increasing of the application of the product. The responses of the sesame growth to the cow urine application must be related both the nutritional richness of the product and the presence of growth stimulating substances. The obtained results indicated that in the sesame/cowpea bean intercropping, when the sesame is planted 7 days after the sesame, there is a higher possibility of the net gains to the farmer. Cow urine and cassava wastewater may be used as additional organic fertilizers

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the importance of the study of roots, little is known about the negative effects of soil compaction in the development of the Caatinga forest species. In this sense, the objective was to evaluate the initial growth of Mimosa caesalpiniifolia, Tabebuia caraiba and Erythina velutina in soil under varying levels of compression. The experiment was conducted in a greenhouse located at the Academic Unit Specialized in Agricultural Sciences, UFRN. To perform the experiment, was used Oxisoil of sandy loam texture, from forest trial Area Agricultural School of Jundiaí (EAJ) of the municipality of Macaíba-RN, in an experimental unit consisting of three overlapping PVC rings, 10 cm in diameter and 25 cm in height, with a central ring which has undergone compression. The experimental design was a randomized block with six replications, being tested four levels of soil compaction (1.35; 1.45; 1.60 and 1.80 kg.dm-³), evaluating the following variables: diameter, height, number of leaves, dry weight of shoot and root system in each layer of the vessels. Overall, the species M. caesalpiniifolia, T. caraiba and E. velutina had initial growth favored by treatment consists of uncompressed soil. The M. caesalpiniifolia and T. caraiba species proved relatively resistant to compaction of the soil does not undergo any significant reduction in root growth density equal to or less than 1.60 kg.dm-³, whereas E. velutina proved susceptible effects of soil compaction, with significant changes in root growth under soil densities equal to or greater than 1.45 kg.dm-³. Increased soil compaction caused the impediment to the expansion of taproot inside the experimental units, promoting the accumulation of roots in the upper layers of the soil for the studied species. The subsoil physical impediment changed the initial aerial growth of M. caesalpiniifolia and E. velutina, but did not influence the growth of air T. caraiba seedlings the tested compression levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brazil is a country in development, rich in natural resources. In order to grow sustainably, it is necessary to Brazil to preserve its environment, which is an expressive challenge, especially to industries, such as those producing ceramic materials. This study was developed using Porcelain Tile Polishing Residue (RPP) in blends with soil to build compacted fills. This residue is a slurry generated during the polishing process of porcelain tiles and contains powdery material from the polished tile, the abrasives used during the process and cooling water. The RPP was collected from a private company located in Conde/PB and it was mixed with a sandy-clayey soil, to build the fills. Laboratorial tests were conducted with pure soil, pure RPP and blends in proportions of 5%, 10%, 15% and 20% of RPP in addition to the dry mass of pure soil. The Chemical and Physical Characterization tests performed were: specific solid weight, grain size distribution, laser analysis of grain size distribution, Atterberg limits, X ray fluorescence, X ray diffraction, scanning electron microscopy and soil compaction,. The materials and blends were also compacted and direct shear tests and plate load tests were performed. Plate load tests were conducted using a circular plate with 30 cm diameter, on specimens of pure soil and 5% blend, compacted in a metallic box inside the Soil Mechanics Laboratory of the Federal University of Rio Grande do Norte, Brazil. Both mechanical tests performed were conducted under inundated conditions, willing to reduce the influence of soil suction. An evaluation of the results of the tests performed shows that RPP is a fine material, with grain size distribution smaller than 0,015mm, composed mainly of silica and alumina, and particles in angular shape. The soil was characterized as a clayey sand, geologically known as a lateritic soil, with high percentages of alumina and iron oxide, and particles with rounded shape. Both the Soil and the blends presented low plasticity, while the residue showed a medium plasticity. Direct shear tests showed that the addition of RPP did not cause major changes into blends’ friction angle data, however, it was possible to note that, for the proportions studied, that is a tendency of obtain lower shear stresses for higher percentages of RPP in the blends. Both pure soil and 5% mixture showed a punching disruption for the Plate load test. For this same test, the allowable stress for 5% mixture was 44% higher than the pure soil, and smaller vertical settlement results for all stresses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brazil is a country in development, rich in natural resources. In order to grow sustainably, it is necessary to Brazil to preserve its environment, which is an expressive challenge, especially to industries, such as those producing ceramic materials. This study was developed using Porcelain Tile Polishing Residue (RPP) in blends with soil to build compacted fills. This residue is a slurry generated during the polishing process of porcelain tiles and contains powdery material from the polished tile, the abrasives used during the process and cooling water. The RPP was collected from a private company located in Conde/PB and it was mixed with a sandy-clayey soil, to build the fills. Laboratorial tests were conducted with pure soil, pure RPP and blends in proportions of 5%, 10%, 15% and 20% of RPP in addition to the dry mass of pure soil. The Chemical and Physical Characterization tests performed were: specific solid weight, grain size distribution, laser analysis of grain size distribution, Atterberg limits, X ray fluorescence, X ray diffraction, scanning electron microscopy and soil compaction,. The materials and blends were also compacted and direct shear tests and plate load tests were performed. Plate load tests were conducted using a circular plate with 30 cm diameter, on specimens of pure soil and 5% blend, compacted in a metallic box inside the Soil Mechanics Laboratory of the Federal University of Rio Grande do Norte, Brazil. Both mechanical tests performed were conducted under inundated conditions, willing to reduce the influence of soil suction. An evaluation of the results of the tests performed shows that RPP is a fine material, with grain size distribution smaller than 0,015mm, composed mainly of silica and alumina, and particles in angular shape. The soil was characterized as a clayey sand, geologically known as a lateritic soil, with high percentages of alumina and iron oxide, and particles with rounded shape. Both the Soil and the blends presented low plasticity, while the residue showed a medium plasticity. Direct shear tests showed that the addition of RPP did not cause major changes into blends’ friction angle data, however, it was possible to note that, for the proportions studied, that is a tendency of obtain lower shear stresses for higher percentages of RPP in the blends. Both pure soil and 5% mixture showed a punching disruption for the Plate load test. For this same test, the allowable stress for 5% mixture was 44% higher than the pure soil, and smaller vertical settlement results for all stresses.