4 resultados para antiúlcera gástrica
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The infection caused by Helicobacter pylori (H. pylori) is associated with gastroduodenal inflammation can lead to the development of gastritis, gastric or duodenal ulcer and gastric cancer (type 1 carcinogen for stomach cancer). Amoxicillin is used as first-line therapy in the treatment of H. pylori associated to metronidazole or clarithromycin, and a proton pump inhibitor. However, the scheme is not fully effective due to inadequate accumulation of antibiotics in gastric tissue, inadequate efficacy of ecological niche of H. pylori, and other factors. In this context, this study aimed to obtaining and characterization of particulate systems gastrorretentivos chitosan - amoxicillin aiming its use for treatment of H. pylori infections. The particles were obtained by the coacervation method / precipitation using sodium sulfate as precipitating agent and crosslinking and two techniques: addition of amoxicillin during preparation in a single step and the sorption particles prior to amoxycillin prepared by coacervation / precipitation and spray drying. The physicochemical characterization of the particles was performed by SEM, FTIR, DSC, TG and XRD. The in vitro release profile of amoxycillin free and incorporated in the particles was obtained in 0.1 N HCl (pH = 1.2). The particles have higher encapsulation efficiency to 80% spherical shape with interconnected particles or adhered to each other, the nanometric diameter to the systems obtained by coacervation / precipitation and fine for the particles obtained by spray drying. The characterization by FTIR, DSC and XRD showed that the drug was incorporated into the nanoparticles dispersed in the polymeric matrix. Thermal analysis (TG and DSC) indicated that encapsulation provides greater heat stability to the drug. Amoxicillin encapsulated in nanoparticles had slower release compared to free drug. The particles showed release profile with a faster initial stage (burst effect) reaching a maximum at 30 minutes 35% of amoxicillin for the system in 1: 1 ratio relative to the polymer and 80% for the system in the ratio 2: 1. Although simple and provide high encapsulation efficiency of amoxicillin, the process of coacervation, precipitation in one step using sodium sulfate as precipitant / cross-linker must be optimized in order to adjust the release kinetics according to the intended application.
Resumo:
This work aimed to develop a suitable magnetic system for administration by the oral route. In addition to that, it was intended to review the current uses of magnetic systems and the safety related to magnetic field exposure. Methods: Coprecipitation and emulsification/crosslinking were carried out in order to synthesize magnetite particles and to coat them, respectively. Results: According to literature review, it was found that magnetic particles present several properties such as magnetophoresis in magnetic field gradient, production of a surrounding magnetic field, and heat generation in alternated magnetic field. When the human organism is exposed to magnetic fields, several interaction mechanisms come into play. However, biological tissues present low magnetic susceptibility. As a result, the effects are not so remarkable. Concerning the development of a magnetic system for oral route, uncoated magnetite particles did undergo significant dissolution at gastric pH. On the other hand, such process was inhibited in the xylan-coated particles. Conclusions: Due to their different properties, magnetic systems have been widely used in biosciences. However, the consequent increased human exposure to magnetic fields has been considered relatively safe. Concerning the experimental work, it was developed a polymer-coated magnetic system. It may be very promising for administration by the oral route for therapy and diagnostic applications as dissolution at gastric pH hardly took place
Resumo:
O desvio gástrico em Y de Roux é a técnica cirúrgica mais utilizada no tratamento da obesidade mórbida. Esta operação reduz o volume do estômago e o comprimento do intestino delgado, gerando alterações estruturais e metabólicas que podem influenciar no resultado de exames cintilográficos de pacientes operados. Com o objetivo de avaliar a biodistribuição pós-operatória do pertecnetato de sódio (Na99mTc) em órgãos de ratos Wistar submetidos à técnica do bypass (desvio) gástrico em Y de Roux (BGYR), foram utilizados 12 ratos distribuídos aleatoriamente em grupo tratado (n=6), submetido à cirurgia do BGYR e o grupo controle (C; n=6). No 15º dia de pós-operatório foi administrado 0,1 mL via plexo orbital de Na99mTc aos animais dos dois grupos, com atividade radioativa média de 0,66MBq. Após 30 minutos, os ratos foram mortos e retirados fragmentos de tireóide, coração, pulmão, fígado, estômago, rim e fêmur. As amostras foram lavadas com solução salina 0,9%, pesadas e submetidas ao Contador Gama 1470, WizardTM Perkin-Elmer-Finlândia para determinação do percentual de atividade radioativa total por grama (%ATI/g) de cada órgão. Empregou-se o teste t de Student para análise estatística, considerando-se significantes as diferenças das médias quando p<0,05. Redução significante na média de %ATI/g foi observada no fígado, estômago e fêmur dos animais submetidos à cirurgia de BGYR comparada ao grupo controle (p<0,05). Nos demais órgãos não houve diferença estatisticamente significativa entre os grupos. Em conclusão, a cirurgia BGYR em ratos modificou a biodistribuição do Na99mTc em alguns órgãos, podendo ter implicações clínicas na interpretação de exames cintilográficos. Este estudo xi teve um caráter multidisciplinar com a participação de pesquisadores das áreas de Cirurgia Experimental, Farmácia, Radiobiologia, Medicina Nuclear e Estatística
Resumo:
Known for thousands of years, tuberculosis (TB) is the leading cause of mortality by a single infectious disease due to lack of patient adherence to available treatment regimens, the rising of multidrug resistant strains of TB (MDR-TB) and co-infection with HIV virus. Isoniazid and rifampicin are the most powerful bactericidal agents against M. tuberculosis. Because of that, this couple of drugs becomes unanimity in anti-TB treatment around the world. However, the rifampicin in acidic conditions in the stomach can be degraded rapidly, especially in the presence of isoniazid, which reduces the amount of available drug for absorption, as well as its bioavailability, contributing to the growing resistance to tuberculostatic drugs. Rifampicin is well absorbed in the stomach because of its high solubility between pH 1 and 2 and the gastric absorption of isoniazid is considered poor, therefore it is mostly intestinal. This work has as objective the development of gastro-resistant multiple-systems (granules and pellets) of isoniazid aiming to prevent the contact with rifampicin, with consequent degradation in acid stomach and modulate the release of isoniazid in the intestine. Granules of isoniazid were obtained by wet method using both alcoholic and aqueous solutions of PVP K-30 as aggregating and binder agent, at proportions of 5, 8 and 10%. The influence of the excipients (starch, cellulose or filler default) on the physical and technological properties of the granules was investigated. The pellets were produced by extrusionesferonization technique using isoniazid and microcrystalline cellulose MC 101 (at the proportion of 85:15) and aqueous solution of 1% Methocel as platelet. The pellets presented advantages over granular, such as: higher apparent density, smaller difference between apparent and compaction densities, smoother surface and, especially, smaller friability, and then were coated with an organic solution of Acrycoat L 100 ® in a fluidized bed. Different percentages of coating (15, 25 and 50%) were applied to the pellets which had their behavior evaluated in vitro by dissolution in acidic and basic medium. Rifampicin dissolution in the presence of uncoated and coated isoniazid pellets was evaluated too. The results indicate that the gastro resistance was only achieved with the greatest amount of coating and isoniazid is released successfully in basic step. The amount of rifampicin in the dissolution medium when the isoniazid pellets were not coated was lower than in the presence of enteric release pellets. Therefore, the polymer Acrycoat L 100 ® was efficient for coating with gastro-resistant function and can solve the problem of low bioavailability of rifampicin and help to reduce its dosage