47 resultados para anisotropia
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
As most current studies, reinforced plastics have been, in recent years, a viable alternative in building structural elements of medium and large, since the lightness accompanied by high performance possible. The design of hybrid polymer composites (combination of different types of reinforcements) may enable structural applications thereof, facing the most severe service conditions. Within this class of composite materials, reinforced the underlying tissues hybrid high performance are taking space when your application requires high load bearing and high rigidity. The objective of this research work is to study the challenges in designing these fabrics bring these materials as to its mechanical characterization and fracture mechanisms involved. Some parameters associated with the process and / or form of hybridization stand out as influential factors in the final performance of the material such as the presence of anisotropy, so the fabric weave, the process of making the same, normative geometry of the specimens, among others. This sense, four laminates were developed based hybrid reinforcement fabrics involving AS4 carbon fiber, kevlar and glass 49-E as the matrix epoxy vinyl ester resin (DERAKANE 411-350). All laminates were formed each with four layers of reinforcements. Depending on the hybrid fabric, all the influencing factors mentioned above have been studied for laminates. All laminates were manufactured industrially used being the lamination process manual (hand-lay-up). All mechanical characterization and study of the mechanism of fracture (fracture mechanics) was developed for laminates subjected to uniaxial tensile test, bending in three and uniaxial compression. The analysis of fracture mechanisms were held involving the macroscopic, optical microscopy and scanning electron microscopy
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
The study and fabrication of nanostructured systems composed of magnetic materials has been an area of great scientific and technological interest. Soft magnetic materials, in particular, have had great importance in the development of magnetic devices. Among such materials we highlight the use of alloys of Ni and Fe, known as Permalloy. We present measurement results of structural characterization and magnetic films in Permalloy (Ni81Fe19), known to be a material with high magnetic permeability, low coercivity and small magneto- crystalline anisotropy, deposited on MgO (100) substrates. The Magnetron Sputtering technique was used to obtain the samples with thicknesses varying between 9 150 nm. The techniques of X- ray Diffraction at high and low angle were employed to confirm the crystallographic orientation and thickness of the films. In order to investigate the magnetic properties of the films the techniques of Vibrant Sample Magnetometry (VSM), Ferromagnetic Resonance (FMR) and Magnetoimpedance were used. The magnetization curves revealed the presence of anisotropy for the films of Py/MgO (100), where it was found that there are three distinct axis - an easy-axis for θH = 0°, a hard-axis for θH = 45° and an intermediate for θH = 90°. The results of the FMR and Magnetoimpedance techniques confirm that there are three distinct axes, that is, there is a type C2 symmetry. Then we propose, for these results, the interpretation of the magnetic anisotropy of Py/MgO ( 100 ) is of type simple C2, ie a cubic magnetic anisotropy type ( 110 )
Resumo:
This dissertation presents a study on crustal seismic anisotropy in Cascavel - CE. The earthquake data employed here are from the Seismological Laboratory at Universidade Federal do Rio Grande do Norte (UFRN) and were colected from 29 September 1997 to 05 march 1998 using six three-component digital seismographic stations. In general, the cause of the observed seismic anisotropy in many regions of the world is interpreted in terms of fluid-filled stress aligned microcracks in the rockmass (EDA). In other words, the polarisation direction of the faster shear-wave splitting is parallel to SHmax. However, other researches on seismic anisotropy carried out in NE Brazil have shown a remarkable consistency of the faster shear-wave polarisation direction with the direction of the Precambrian fabric. The present work is another case study that is used to investigate this issue. In order to map the Precambrian fabric we used aeromagnetic data, since the study area is mostly covered with sediments (up to 50m thick) and in-situ field mapping would be very difficult to be carried out. According to the results from the present research, the observations of the faster shear-wave polarisation directions in two seismographic stations in Cascavel region are best explained in the framework of EDA. For the remaining two stations, the observed anisotropy may have two interpretions: (i) - 90_ flips of the direction of polarisation of the faster shear-wave, since that the event-to-station ray path would be through the fracture zone and hence would travel under a higher pore pressure and (ii) - the observed seismic anisotropy would agree with the direction on the ductile Precambrian fabric
Resumo:
The microstrip antennas in your simplest form consist of a ground plane and a dielectric substrate which supports a conductive tape. As these antennas have some limitations, this work presents a study of anisotropic substrates, as well as some results in microstrip antennas with circular patch, aiming to overcome these limitations, especially in applications at 4G technology. These anisotropic substrates are those in which electrical permittivity and magnetic permeability are represented by tensors of second order. The study consists of a theoretical analysis of substrates and development of a mathematical formalism, the Transverse Transmission Line Method, aimed the application of these substrates in microstrip antennas. Among the substrates used in this study, there are the ferrimagnetic and metamaterials, in which some miniaturizations of the antennas are achieved. For antennas with circular patch, are considered arrays and modified ground planes in order to achieve improvement in parameters, in particular, gain and bandwidth. Several simulations have been made and antennas were constructed so that the measured values could be compared with the simulated values.
Resumo:
This Thesis comprises a theoretical study about the influence of the magnetocrystalline anisotropy on the static and dynamic magnetic properties of nanofilms: monolayers and trilayers coupled through the bilinear and biquadratic exchange fields, for situations in which the systems are grown in unusual [hkl] asymmetric directions. Using a theory based on a realistic phenomenological model for description of nanometric systems, we consider the total free magnetic energy including the Zeeman interaction, cubic and uniaxial anisotropies, demagnetizing and surface anysotropy energies, as well as the exchange terms. Numerical calculations are conducted by minimizing the total magnetic energy from the determination of equilibrium static configurations. We consider experimental parameters found in the literature to illustrate our results for Fe/Cr/Fe trilayer systems. In particular, a total of six different magnetic scenarios are analyzed for three regimens of exchange fields and the [211] and [321] asymmetric growth directions. After numerically minimize the total energy, we use the equilibrium configurations to calculate magnetization and magnetoresistance curves with the respective magnetic phases and corresponding critical fields. These results are also used to establish the boundary for occurrence of saturated states. Within the context of the spin waves, we solve the equation of motion for these systems in order to find the respective associated dispersion relations. The results show similar magnetization and magnetoresistance curves for both [211] and [321] growth scenarios, including an equivalent magnetic transition behavior. However, the combination of those peculiar symmetries and influence of the exchange energies results in attractive properties, including the generation of magnetic states as a function of the asymmetric degree imposed in the [hkl] growth orientations. There is also an increasing incompatibility between the values of saturation fields of magnetization and magnetoresistance for the cases in which a magnetic field acts along intermediate cubic anisotropic axes, particularly in the situations where the bilinear and biquadratic exchange fields are comparable. The dispersion relations and static results are consistent, the corresponding magnetic states are also present in both acoustic and optical modes. Furthermore, Goldstone excitations are also observed for that particular cases of a magnetic field acting in the intermediate axes, an effect related to transitions of second order and to the spontaneous symmetry breaking imposed by the combination of the biquadratic energy with the cubic and uniaxial anisotropies.
Resumo:
As most current studies, reinforced plastics have been, in recent years, a viable alternative in building structural elements of medium and large, since the lightness accompanied by high performance possible. The design of hybrid polymer composites (combination of different types of reinforcements) may enable structural applications thereof, facing the most severe service conditions. Within this class of composite materials, reinforced the underlying tissues hybrid high performance are taking space when your application requires high load bearing and high rigidity. The objective of this research work is to study the challenges in designing these fabrics bring these materials as to its mechanical characterization and fracture mechanisms involved. Some parameters associated with the process and / or form of hybridization stand out as influential factors in the final performance of the material such as the presence of anisotropy, so the fabric weave, the process of making the same, normative geometry of the specimens, among others. This sense, four laminates were developed based hybrid reinforcement fabrics involving AS4 carbon fiber, kevlar and glass 49-E as the matrix epoxy vinyl ester resin (DERAKANE 411-350). All laminates were formed each with four layers of reinforcements. Depending on the hybrid fabric, all the influencing factors mentioned above have been studied for laminates. All laminates were manufactured industrially used being the lamination process manual (hand-lay-up). All mechanical characterization and study of the mechanism of fracture (fracture mechanics) was developed for laminates subjected to uniaxial tensile test, bending in three and uniaxial compression. The analysis of fracture mechanisms were held involving the macroscopic, optical microscopy and scanning electron microscopy
Resumo:
In this study barium hexaferrite was (general formulae BaFe12O19) was synthesized by the Pechini method under different conditions of heat treatment. Precursors like barium carbonate and iron nitrate were used. These magnetic ceramic, with magnetoplumbite type structure, are widely used as permanent magnet because of its excellent magnetic properties, such as: high Curie temperature, good magnetic anisotropy, high coercivity and corrosion resistance. The samples were characterized by thermal analysis (DTA and TG), X- ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) end Vibrating sample Magnetometer (VSM). The results confirm the expected phase, which was reinforced according to our analysis. A single phase powder at relatively high temperatures with particle sizes around 100 nm was obtained. The characteristic magnetic behavior one of the phases has been noted (probably superparamagnetic material), while another phase was identified as a ferrimagnetic material. The ferrimagnetic phase showed vortex configuration with two central and slightly inclined plateaus. In general, increase of heat treatment temperature and time, directly influenced the technological properties of the samples
Resumo:
Neste trabalho, são utilizadas a Técnica da Ressonância Transversa (TRT) e a Técnica da Ressonância Transversa Modificada (MTRT), para a determinação das freqüências dos modos ressonantes de antenas de microfita com patch quadrado, retangular e circular e com substratos isotrópicos e anisotrópicos. Para isso, é proposto um modelo da cavidade equivalente, onde a antena tipo patch retangular é representada como sendo a superposição de duas linhas infinitas em microfita, uma de largura W, representando a dimensão que expressa a largura do patch, e a outra com largura L, representando a dimensão que expressa o comprimento do patch. A avaliação da eficiência e aplicabilidade dos métodos citados é realizada comparando-se com resultados experimentais e obtidos através de outras técnicas. Três situações serão verificadas: estruturas com substrato infinito, estrutura com substrato tipo pedestal e estruturas com substrato truncado além dos limites da fita metálica. Os resultados obtidos demonstram que as técnicas de análise de onda completa utilizadas neste trabalho, por um formalismo matemático mais rigoroso, são eficientes e precisas tanto na aplicação em estruturas com substrato isotrópico como nas que possuem substrato anisotrópico. Inicialmente são consideradas apenas as estruturas com substratos isotrópicos, com diferentes constantes dielétricas, e é avaliada a influência da largura do substrato sobre as freqüências dos modos ressonantes das antenas. Posteriormente, a análise do truncamento do dielétrico é realizada para estruturas com substrato anisotrópico. Em todos os casos, os resultados experimentais, obtidos a partir da construção de protótipos, são confrontados com os obtidos a partir de simulação, utilizando as técnicas TRT e MTRT. No final, as técnicas descritas são utilizadas para antenas tipo patch circular, sendo utilizada uma técnica de equivalência para transformar a antena circular em outra quadrada ou retangular equivalente, dependendo do modo que se queira encontrar. Os resultados obtidos são então analisados, observando-se uma boa concordância e indicando a viabilidade do método. Após isso, são apresentadas as conclusões e sugeridos alguns temas para a continuidade deste trabalho
Resumo:
Microstrip antennas are subject matter in several research fields due to its numerous advantages. The discovery, at 1999, of a new class of materials called metamaterials - usually composed of metallic elements immersed in a dielectric medium, have attracted the attention of the scientific community, due to its electromagnetic properties, especially the ability to use in planar structures, such as microstrip, without interfering with their traditional geometry. The aim of this paper is to analyze the effects of one and bidimensional metamaterial substrates in microstrip antennas, with different configurations of resonance rings, SRR, in the dielectric layer. Fractal geometry is applied to these rings, in seeking to verify a multiband behavior and to reduce the resonance frequency of the antennas. The results are then given by commercial software Ansoft HFSS, used for precise analysis of the electromagnetic behavior of antennas by Finite Element Method (FEM). To reach it, this essay will first perform a literature study on fractal geometry and its generative process. This paper also presents an analysis of microstrip antennas, with emphasis on addressing different types of substrates as part of its electric and magnetic anisotropic behavior. It s performed too an approach on metamaterials and their unique properties
Resumo:
The growing demand in the use of composite materials necessitates a better understanding of its behavior related to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. Within these project conditions are highlighted the presence of geometrical discontinuities in the area of cross and longitudinal sections of structural elements and environmental conditions of work like UV radiation, moisture, heat, leading to a decrease in final mechanical response of the material. In this sense, this thesis aims to develop studies detailed (experimental and semi-empirical models) the effects caused by the presence of geometric discontinuity, more specifically, a central hole in the longitudinal section (with reduced cross section) and the influence of accelerated environmental aging on the mechanical properties and fracture mechanism of FGRP composite laminates under the action of uniaxial tensile loads. Studies on morphological behavior and structural degradation of composite laminates are performed by macroscopic and microscopic analysis of affected surfaces, in addition to evaluation by the Measurement technique for mass variation (TMVM). The accelerated environmental aging conditions are simulated by aging chamber. To study the simultaneous influence of aging/geometric discontinuity in the mechanical properties of composite laminates, a semiempirical model is proposed and called IE/FCPM Model. For the stress concentration due to the central hole, an analisys by failures criteria were performed by Average-Stress Criterion (ASC) and Point-Stress Criterion (PSC). Two polymeric composite laminates, manufactured industrially were studied: the first is only reinforced by short mats of fiberglass-E (LM) and the second where the reinforced by glass fiber/E comes in the form of bidirectional fabric (LT). In the conception configurations of laminates the anisotropy is crucial to the final mechanical response of the same. Finally, a comparative study of all parameters was performed for a better understanding of the results. How conclusive study, the characteristics of the final fracture of the laminate under all conditions that they were subjected, were analyzed. These analyzes were made at the macroscopic level (scanner) microscope (optical and scanning electron). At the end of the analyzes, it was observed that the degradation process occurs similarly for each composite researched, however, the LM composite compared to composite LT (configurations LT 0/90º and LT ±45º) proved to be more susceptible to loss of mechanical properties in both regarding with the central hole as well to accelerated environmental aging
Resumo:
The growing demand in the use of composite materials necessitates a better understanding its behavior to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. It is know that most of the structural elements are designed with presence of geometric discontinuities (holes, notches, etc) in their longitudinal sections and / or transversals, and that these discontinuities affect the mechanical response of these elements. This work has aims to analyze a study of the mechanical response, when in the presence geometric discontinuity, of polymer matrix composite laminates (orthophthalic polyester) to the uniaxial tensile test. The geometric discontinuity is characterized by the presence of a center hole in the transversal section of the composite. In this study, different kinds of stacking sequences are tested, with and without the presence of the hole, so as to provide better understanding of the mechanical properties. This sense, two laminates were studied: the first is only reinforced by with seven layers short mats of fiberglass-E (CM) and the second where the reinforcement of fiberglass-E comes in the form of bidirectional fabric (CT), with only four layers. The laminate CT has the presence of anisotropy (sense of continuous fibers with respect to the applied load) as the main parameter influencing its mechanical behavior, behavior this, not observed for the CM. In addition to the mechanical properties was also studied the fracture characteristics developed in each composite laminated. The results also showed that the presence of the hole in the transversal section decreased the ultimate strength of laminates and changed the final characteristic of fracture in all kinds of composite laminated studied
Resumo:
Composite materials have a wide application in various sectors, such as the medical field in the manufacture of prostheses, in automotive and aerospace. Thus it is essential to the development of new composite and a better understanding in the face of various loading conditions and service. Several structural elements are manufactured in the presence of geometric discontinuity (notch, hole, etc ) in their longitudinal sections and/or cross-cutting, and these affect the mechanical response of these elements. The objective is to study the mechanical response of laminated polymer matrix hybrid composites reinforced with glass fiber/jute in a uniaxial tensile test. The mechanical response takes in account both the influence of the presence of a geometric discontinuity (semicircular notches) and the orientation of fibers in the layers (anisotropy). The semicircular notches are located in longitudinal section (with a reduction in cross section) of the same. In this analysis, the anisotropy is characterized by types of configurations (with different orientations of fibers in the outer layers). A comparative study of mechanical properties with and without the presence of notches is developed. Both configurations consist of four layers of woven jute fiber bidirectional and a central layer of bidirectional woven glass fibers. In addition to the mechanical properties was also studied the characteristics of the fracture developed in each composite laminate. The results showed that in the comparative study, the anisotropy and the presence of semicircular notches directly influences the mechanical behavior of laminates composites, mainly in reducing the tensile strength, and well as the final characteristics of the fracture
Resumo:
Composites based on PEEK + PTFE + CARBON FIBER + Graphite (G_CFRP) has increased application in the top industries, as Aerospace, Aeronautical, Petroleum, Biomedical, Mechanical and Electronics Engineering challenges. A commercially available G_CFRP was warmed up to three different levels of thermal energy to identify the main damage mechanisms and some evidences for their intrinsic transitions. An experimental test rig for systematize a heat flux was developed in this dissertation, based on the Joule Effect. It was built using an isothermal container, an internal heat source and a real-time measurement system for test a sample by time. A standard conical-cylindrical tip was inserted into a soldering iron, commercially available and identified by three different levels of nominal electrical power, 40W (manufacturer A), 40W (manufacturer B), 100W and 150W, selected after screening tests: these power levels for the heat source, after one hour of heating and one hour of cooling in situ, carried out three different zones of degradation in the composite surface. The bench was instrumented with twelve thermocouples, a wattmeter and a video camera. The twelve specimens tested suffered different degradation mechanisms, analyzed by DSC (Differential Scanning Calorimetry) and TG (Thermogravimetry) techniques, Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Rays (EDX) Analysis. Before and after each testing, it was measured the hardness of the sample by HRM (Hardness Rockwell M). Excellent correlations (R2=1) were obtained in the plots of the evaporated area after one hour of heating and one hour of cooling in situ versus (1) the respective power of heat source and (2) the central temperature of the sample. However, as resulting of the differential degradation of G_CFRP and their anisotropy, confirmed by their variable thermal properties, viscoelastic and plastic properties, there were both linear and non-linear behaviour between the temperature field and Rockwell M hardness measured in the radial and circumferential directions of the samples. Some morphological features of the damaged zones are presented and discussed, as, for example, the crazing and skeletonization mechanism of G_CFRP