6 resultados para análise tridimensional

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the modern Continental Shelf to the north of Rio Grande do Norte state (NE Brazil) is located a paleo-valley, submerged during the last glacial sea-level lowstand, that marks continuation of the most important river of this area (Açu River). Despite the high level of exploration activity of oil industry, there is few information about shallow stratigraphy. Aiming to fill this gap, situated on the Neogene, was worked a marine seismic investigation, the development of a processing flow for high resolution data seismic, and the recognition of the main feature morphology of the study area: the incised valley of the River Açu. The acquisition of shallow seismic data was undertaken in conjunction with the laboratory of Marine Geology/Geophysics and Environmental Monitoring - GGEMMA of Federal University of Rio Grande do Norte UFRN, in SISPLAT project, where the geomorphological structure of the Rio paleovale Açu was the target of the investigation survey. The acquisition of geophysical data has been over the longitudinal and transverse sections, which were subsequently submitted to the processing, hitherto little-used and / or few addressed in the literature, which provided a much higher quality result with the raw data. Once proposed for the flow data was developed and applied to the data of X-Star (acoustic sensor), using available resources of the program ReflexW 4.5 A surface fluvial architecture has been constructed from the bathymetric data and remote sensing image fused and draped over Digital Elevation Models to create three-dimensional (3D) perspective views that are used to analyze the 3D geometry geological features and provide the mapping morphologically defined. The results are expressed in the analysis of seismic sections that extend over the region of the continental shelf and upper slope from mouth of the Açu River to the shelf edge, providing the identification / quantification of geometrical features such as depth, thickness, horizons and units seismic stratigraphyc area, with emphasis has been placed on the palaeoenvironmental interpretation of discordance limit and fill sediment of the incised valley, control by structural elements, and marked by the influence of changes in the sea level. The interpretation of the evolution of this river is worth can bring information to enable more precise descriptions and interpretations, which describes the palaeoenvironmental controls influencing incised valley evolution and preservation to provide a better comprehensive understanding of this reservoir analog system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work consists of the conception, developing and implementation of a Computational Routine CAE which has algorithms suitable for the tension and deformation analysis. The system was integrated to an academic software named as OrtoCAD. The expansion algorithms for the interface CAE genereated by this work were developed in FORTRAN with the objective of increase the applications of two former works of PPGEM-UFRN: project and fabrication of a Electromechanincal reader and Software OrtoCAD. The software OrtoCAD is an interface that, orinally, includes the visualization of prothetic cartridges from the data obtained from a electromechanical reader (LEM). The LEM is basically a tridimensional scanner based on reverse engineering. First, the geometry of a residual limb (i.e., the remaining part of an amputee leg wherein the prothesis is fixed) is obtained from the data generated by LEM by the use of Reverse Engineering concepts. The proposed core FEA uses the Shell's Theory where a 2D surface is generated from a 3D piece form OrtoCAD. The shell's analysis program uses the well-known Finite Elements Method to describe the geometry and the behavior of the material. The program is based square-based Lagragean elements of nine nodes and displacement field of higher order to a better description of the tension field in the thickness. As a result, the new FEA routine provide excellent advantages by providing new features to OrtoCAD: independency of high cost commercial softwares; new routines were added to the OrtoCAD library for more realistic problems by using criteria of fault engineering of composites materials; enhanced the performance of the FEA analysis by using a specific grid element for a higher number of nodes; and finally, it has the advantage of open-source project and offering customized intrinsic versatility and wide possibilities of editing and/or optimization that may be necessary in the future

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Problems associated to longitudinal interactions in buried pipelines are characterized as three-dimensional and can lead to different soil-pipe issues. Despite the progress achieved in research on buried pipelines, little attention has been given to the three-dimensional nature of the problem throughout the last decades. Most of researches simplify the problem by considering it in plane strain condition. This dissertation aims to present a study on the behavior of buried pipelines under local settlement or elevation, using three-dimensional simulations. Finite element code Plaxis 3D was used for the simulations. Particular aspects of the numerical modeling were evaluated and parametric analyzes were performed, was investigated the effects of soil arching in three-dimensional form. The main variables investigated were as follows: relative density, displacement of the elevation or settlement zone, elevated zone size, height of soil cover and pipe diameter/thickness ratio. The simulations were performed in two stages. The first stage was involved the validation of the numerical analysis using the physical models put forward by Costa (2005). In the second stage, numerical analyzes of a full-scale pipeline subjected to a localized elevation were performed. The obtained results allowed a detailed evaluation of the redistribution of stresses in the soil mass and the deflections along the pipe. It was observed the reduction of stresses in the soil mass and pipe deflections when the height of soil cover was decreased on regions of the pipe subjected to elevation. It was also shown for the analyzed situation that longitudinal thrusts were higher than vi circumferential trusts and exceeded the allowable stresses and deflections. Furthermore, the benefits of minimizing stress with technical as the false trench, compressible cradle and a combination of both applied to the simulated pipeline were verified

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research is to analyze different daylighting systems in schools in the city of Natal/RN. Although with the abundantly daylight available locally, there are a scarce and diffuse architectural recommendations relating sky conditions, dimensions of daylight systems, shading, fraction of sky visibility, required illuminance, glare, period of occupation and depth of the lit area. This research explores different selected apertures systems to explore the potential of natural light for each system. The method has divided into three phases: The first phase is the modeling which involves the construction of three-dimensional model of a classroom in Sketchup software 2014, which is featured in follow recommendations presented in the literature to obtain a good quality of environmental comfort in school settings. The second phase is the dynamic performance computer simulation of the light through the Daysim software. The input data are the climate file of 2009 the city of Natal / RN, the classroom volumetry in 3ds format with the assignment of optical properties of each surface, the sensor mapping file and the user load file . The results produced in the simulation are organized in a spreadsheet prepared by Carvalho (2014) to determine the occurrence of useful daylight illuminance (UDI) in the range of 300 to 3000lux and build graphics illuminance curves and contours of UDI to identify the uniformity of distribution light, the need of the minimum level of illuminance and the occurrence of glare.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The understanding of the occurrence and flow of groundwater in the subsurface is of fundamental importance in the exploitation of water, just like knowledge of all associated hydrogeological context. These factors are primarily controlled by geometry of a certain pore system, given the nature of sedimentary aquifers. Thus, the microstructural characterization, as the interconnectivity of the system, it is essential to know the macro properties porosity and permeability of reservoir rock, in which can be done on a statistical characterization by twodimensional analysis. The latter is being held on a computing platform, using image thin sections of reservoir rock, allowing the prediction of the properties effective porosity and hydraulic conductivity. For Barreiras Aquifer to obtain such parameters derived primarily from the interpretation of tests of aquifers, a practice that usually involves a fairly complex logistics in terms of equipment and personnel required in addition to high cost of operation. Thus, the analysis and digital image processing is presented as an alternative tool for the characterization of hydraulic parameters, showing up as a practical and inexpensive method. This methodology is based on a flowchart work involving sampling, preparation of thin sections and their respective images, segmentation and geometric characterization, three-dimensional reconstruction and flow simulation. In this research, computational image analysis of thin sections of rocks has shown that aquifer storage coefficients ranging from 0,035 to 0,12 with an average of 0,076, while its hydrogeological substrate (associated with the top of the carbonate sequence outcropping not region) presents effective porosities of the order of 2%. For the transport regime, it is evidenced that the methodology presents results below of those found in the bibliographic data relating to hydraulic conductivity, mean values of 1,04 x10-6 m/s, with fluctuations between 2,94 x10-6 m/s and 3,61x10-8 m/s, probably due to the larger scale study and the heterogeneity of the medium studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study offers an analytical approach in order to provide a determination of the temperature field developed during the DC TIG welding of a thin plate of aluminum. The non-linear characteristics of the phenomenon, such as the dependence of the thermophysical and mechanical properties with temperature were considered in this study. In addition to the conductive heat exchange process, were taken into account the exchange by natural convection and radiation. A transient analysis is performed in order to obtain the temperature field as a function of time. It is also discussed a three-dimensional modeling of the heat source. The results obtained from the analytical model were be compared with the experimental ones and those available in the literature. The analytical results show a good correlation with the experimental ones available in the literature, thus proving the feasibility and efficiency of the analytical method for the simulation of the heat cycle for this welding process.