9 resultados para Zirconia ceramics

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramics materials have good properties including chemical stability, high hardness and wear resistance. Moreover, due to its fragility, can suffer failure under relatively low levels of tension. Actually zirconia is the material of choice in metal free dental prostheses used in dentistry due its inertia in physiological environment, good bending strength, hardness and fracture toughness. The alumina and mixed tungsten and titanium carbides additions, acting as reinforcement elements in the zirconia matrix, have as their main objective the improvement of mechanical properties of this material. In this work, samples of zirconia, zirconia with 30% wt of alumina and zirconia with 30% wt mixed carbides were analyzed. The samples were sintered by uniaxial hot pressing on 30 MPa pressure, for 1 hour in an argon atmosphere. They were physically characterized by porosity and density measurements, and mechanically by 3-points bending strength and Vickers microhardness. The X-ray diffraction was used for the phase identifications and microstructure was examined by scanning electron microscopy (SEM). The addition of mixed carbides as reinforcement elements in zirconia matrix provides improvements in all properties analyzed in this work. The alumina addition has dropped the zirconia strength, although it caused improvement in other properties

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continuous advances in ceramic systems for crowns and bridges infrastructure getting researchers and manufacturers looking for a material that has good mechanical properties and aesthetic. The purpose of this study was to verify in which composition and sintering temperature the ceramic system for infrastructure composed of alumina and zirconia would have the best mechanical properties. With this objective we made in UFRN laboratories 45 test bodies in the form of rectangular bars with the following dimensions: 30mm x 8mm x 3mm, where we separated by the sintering temperature: 1200°C, 1300ºC and 1400ºC, and by comp osition: 33% Zirconia + 67% Alumina; 50% Zirconia + 50% Alumina and 25% Zirconia + 75% Alumina, these test bodies were not infiltrated with glass. Also, were made nine test bodies by a technical from a laboratory with a commercial ceramic system: in the Ceram Zircônia (Vita - Zahnfabrik) with the following dimensions: 20mm x 10mm x 0.5mm, these test bodies following all recommendations of the manufacturer and were infiltrated with glass. Were realized optical and electronic microscopy analyses, hardness testing, resistance to bending in three points, porosity and bulk density. After analysis of the results we verified that with the increasing of sintering temperature, increased the value of resistance to bending, but with the same temperature there was no significant difference between the different compositions, samples made with the commercial ceramic that were infiltrated, presented a resistance to bending six times greater than the samples sintered to 1400°C and which have not been infiltra ted. There was no significant difference between the values of apparent porosity for the samples made in UFRN laboratories, but the samples of commercial ceramic obtained 0% in porosity apparent value. In tests of Rockwell Hardness there is an increase in the value of Hardness, with the increase of sintering temperature for the samples not infiltrated. Samples infiltrated showed similar values as the samples sintered in 1400°C. There was no significant difference between the values of apparent density among samples manufactured in UFRN laboratories and samples made with a commercial ceramic

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-ceramic interfaces are present in tricone drill bits with hard ceramic inserts for oil well drilling operations. The combination of actions of cutting, crushing and breaking up of rocks results in the degradation of tricone drill bits by wear, total or partial rupture of the drill bit body or the ceramic inserts, thermal shock and corrosion. Also the improper pressfitting of the ceramic inserts on the bit body may cause its total detachment, and promote serious damages to the drill bit. The improvement on the production process of metal-ceramic interfaces can eliminate or minimize some of above-mentioned failures presented in tricone drill bits, optimizing their lifetime and so reducing drilling metric cost. Brazing is a widely established technique to join metal-ceramic materials, and may be an excellent alternative to the common mechanical press fitting process of hard ceramic inserts on the steel bit body for tricone drill bit. Wetting phenomena plays an essential role in the production of metal/ceramic interfaces when a liquid phase is present in the process. In this work, 72Silver-28Copper eutectic based brazing alloys were melted onto zirconia, silicon nitride and tungsten carbide/Co substrates under high vacuum. Contact angle evolution was measured and graphically plotted, and the interfaces produced were analysed by SEM-EDX. The AgCu eutectic alloy did not wet any ceramic substrates, showing high contact angles, and so without chemical interaction between the materials. Better results were found for the systemns containing 3%wt of titanium in the AgCu alloy. The presence os titanium as a solute in the alloy produces wettable cand termodinamically stable compounds, increasing the ceramics wetting beahviour

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cells are considered one of the most promising ways of converting electrical energy due to its high yield and by using hydrogen (as fuel) which is considered one of the most important source of clean energy for the future. Rare earths doped ceria has been widely investigated as an alternative material for the electrolyte of solid oxide fuel cells (SOFCs) due to its high ionic conductivity at low operating temperatures compared with the traditional electrolytes based on stabilized zirconia. This work investigates the effect of gallium oxide (Gallia) as a sintering aid in Eu doped ceria ceramic electrolytes since this effect has already been investigated for Gd, Sm and Y doped ceria electrolytes. The desired goal with the use of a sintering aid is to reduce the sintering temperature aiming to produce dense ceramics. In this study we investigated the effects on densification, microstructure and ionic conduction caused by different molar fraction of the dopants europium (10, 15 and 20%) and gallium oxide (0.3, 0.6 and 0.9%) in samples sintered at 1300, 1350 and 1450 0 C. Samaria (10 and 20%) doped ceria samples sintered between 1350 and 1450 °C were used as reference. Samples were synthesized using the cation complexation method. The ceramics powders were characterized by XRF, XRD and SEM, while the sintered samples were investigated by its relative density, SEM and impedance spectroscopy. It was showed that gallia contents up to 0.6% act as excellent sintering aids in Eu doped ceria. Above this aid content, gallia addition does not promote significant increase in density of the ceramics. In Ga free samples the larger densification were accomplished with Eu 15% molar, effect expressed in the microstructure with higher grain growth although reduced and surrounded by many open pores. Relative densities greater than 95 % were obtained by sintering between 1300 and 1350 °C against the usual range 1500 - 1600 0 C. Samples containing 10% of Sm and 0.9% of Ga reached 96% of theoretical density by sintering at 1350 0 C for 3h, a gain compared to 97% achieved with 20% of Sm and 1% of Ga co-doped cerias sintered at 1450 0 C for 24 h as described in the literature. It is found that the addition of gallia in the Eu doped ceria has a positive effect on the grain conductivity and a negative one in the grain boundary conductivity resulting in a small decrease in the total conductivity which will not compromise its application as sintering aids in ceria based electrolytes. Typical total conductivity values at 600 and 700 °C, around 10 and 30 mS.cm -1 respectively were reached in this study. Samples with 15% of Eu and 0.9 % of Ga sintered at 1300 and 1350 °C showed relative densities greater than 96% and total conductivity (measured at 700 °C) between 20 and 33 mS.cm -1 . The simultaneous sintering of the electrolyte with the anode is one of the goals of research in materials for SOFCs. The results obtained in this study suggest that dense Eu and Ga co-doped ceria electrolytes with good ionic conductivity can be sintered simultaneously with the anode at temperatures below 1350 °C, the usual temperature for firing porous anode materials

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materiais compósitos restauradores representam um dos mais bem sucedidos biomateriais na pesquisa moderna, na substituição do tecido biológico em aparência e função. Nesta linha, a porcelana feldspática tem sido largamente usada em odontologia devido suas interessantes qualidades como estabilidade de cor, propriedades estéticas, elevada durabilidade mecânica, biocompatibilidade, baixa condutividade térmica e elevada resistência ao desgaste. Entretanto, este material é frágil e pode falhar em ambiente oral devido ao micro-vazamento, baixa resistência à tração, descolagem ou fratura. Assim, para melhorar as propriedades mecânicas da porcelana, a zircônia parcialmente estabilizada com Ítria (Y-TZP) pode ser uma boa alternativa para fortalecer e produzir infraestruturas totalmente cerâmicas (coroas e próteses parciais fixas). Portanto, este estudo tem por objetivo avaliar as propriedades mecânicas e características microestruturais da porcelana reforçada com zircônia (3Y-TZP) em diferentes conteúdos e as variáveis que afetam as propriedades mecânicas destes materiais. O estudo de caracterização revelou que a zircônia comercial apresenta melhores resultados quando comparada com a zircônia sintetizada pelo CPM. Assim, os estudos seguintes utilizaram a zircônia comercial para todos os testes requeridos. As partículas de zircônia apresentam elevadas propriedades mecânicas quando comparadas a zircônia aglomerada. Os diferentes conteúdos revelam que as propriedades mecânicas dos compósitos aumentam com o aumento do conteúdo volumétrico até 30% vol.% (198,5Mpa), ou seja, maior resistência à flexão quando comparada com os outros compósitos. Do mesmo modo, a resistência ao desgaste para os compósitos com (30%, vol.% de zircônia) apresenta valores superiores quando comparado aos demais compósitos. Na adesão cerâmico-cerâmico a porcelana exibe elevada adesão para a superfície de zircônia porosa quando comparada a superfície rugosa. Os furos superficiais (PZ) e aplicação de compósitos com camada intermediária (RZI) na zircônia causam separadamente uma melhoria da resistência ao cisalhamento da zircônia-porcelana quando comparados as amostras convencionais de zircônia-porcelana (RZ), embora não sejam estatisticamente significativas (p>0.05). A presença de uma camada intermediaria produz um aumento significativo na força de ligação (~55%) em relação as amostras convencionais (RZ). Portanto, a correta a correta configuração e tratamento superficial podem produzir subestruturas com qualidade e força de ligação adequadas aos requisitos odontológicos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramics materials have good properties including chemical stability, high hardness and wear resistance. Moreover, due to its fragility, can suffer failure under relatively low levels of tension. Actually zirconia is the material of choice in metal free dental prostheses used in dentistry due its inertia in physiological environment, good bending strength, hardness and fracture toughness. The alumina and mixed tungsten and titanium carbides additions, acting as reinforcement elements in the zirconia matrix, have as their main objective the improvement of mechanical properties of this material. In this work, samples of zirconia, zirconia with 30% wt of alumina and zirconia with 30% wt mixed carbides were analyzed. The samples were sintered by uniaxial hot pressing on 30 MPa pressure, for 1 hour in an argon atmosphere. They were physically characterized by porosity and density measurements, and mechanically by 3-points bending strength and Vickers microhardness. The X-ray diffraction was used for the phase identifications and microstructure was examined by scanning electron microscopy (SEM). The addition of mixed carbides as reinforcement elements in zirconia matrix provides improvements in all properties analyzed in this work. The alumina addition has dropped the zirconia strength, although it caused improvement in other properties

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continuous advances in ceramic systems for crowns and bridges infrastructure getting researchers and manufacturers looking for a material that has good mechanical properties and aesthetic. The purpose of this study was to verify in which composition and sintering temperature the ceramic system for infrastructure composed of alumina and zirconia would have the best mechanical properties. With this objective we made in UFRN laboratories 45 test bodies in the form of rectangular bars with the following dimensions: 30mm x 8mm x 3mm, where we separated by the sintering temperature: 1200°C, 1300ºC and 1400ºC, and by comp osition: 33% Zirconia + 67% Alumina; 50% Zirconia + 50% Alumina and 25% Zirconia + 75% Alumina, these test bodies were not infiltrated with glass. Also, were made nine test bodies by a technical from a laboratory with a commercial ceramic system: in the Ceram Zircônia (Vita - Zahnfabrik) with the following dimensions: 20mm x 10mm x 0.5mm, these test bodies following all recommendations of the manufacturer and were infiltrated with glass. Were realized optical and electronic microscopy analyses, hardness testing, resistance to bending in three points, porosity and bulk density. After analysis of the results we verified that with the increasing of sintering temperature, increased the value of resistance to bending, but with the same temperature there was no significant difference between the different compositions, samples made with the commercial ceramic that were infiltrated, presented a resistance to bending six times greater than the samples sintered to 1400°C and which have not been infiltra ted. There was no significant difference between the values of apparent porosity for the samples made in UFRN laboratories, but the samples of commercial ceramic obtained 0% in porosity apparent value. In tests of Rockwell Hardness there is an increase in the value of Hardness, with the increase of sintering temperature for the samples not infiltrated. Samples infiltrated showed similar values as the samples sintered in 1400°C. There was no significant difference between the values of apparent density among samples manufactured in UFRN laboratories and samples made with a commercial ceramic

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-ceramic interfaces are present in tricone drill bits with hard ceramic inserts for oil well drilling operations. The combination of actions of cutting, crushing and breaking up of rocks results in the degradation of tricone drill bits by wear, total or partial rupture of the drill bit body or the ceramic inserts, thermal shock and corrosion. Also the improper pressfitting of the ceramic inserts on the bit body may cause its total detachment, and promote serious damages to the drill bit. The improvement on the production process of metal-ceramic interfaces can eliminate or minimize some of above-mentioned failures presented in tricone drill bits, optimizing their lifetime and so reducing drilling metric cost. Brazing is a widely established technique to join metal-ceramic materials, and may be an excellent alternative to the common mechanical press fitting process of hard ceramic inserts on the steel bit body for tricone drill bit. Wetting phenomena plays an essential role in the production of metal/ceramic interfaces when a liquid phase is present in the process. In this work, 72Silver-28Copper eutectic based brazing alloys were melted onto zirconia, silicon nitride and tungsten carbide/Co substrates under high vacuum. Contact angle evolution was measured and graphically plotted, and the interfaces produced were analysed by SEM-EDX. The AgCu eutectic alloy did not wet any ceramic substrates, showing high contact angles, and so without chemical interaction between the materials. Better results were found for the systemns containing 3%wt of titanium in the AgCu alloy. The presence os titanium as a solute in the alloy produces wettable cand termodinamically stable compounds, increasing the ceramics wetting beahviour

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cells are considered one of the most promising ways of converting electrical energy due to its high yield and by using hydrogen (as fuel) which is considered one of the most important source of clean energy for the future. Rare earths doped ceria has been widely investigated as an alternative material for the electrolyte of solid oxide fuel cells (SOFCs) due to its high ionic conductivity at low operating temperatures compared with the traditional electrolytes based on stabilized zirconia. This work investigates the effect of gallium oxide (Gallia) as a sintering aid in Eu doped ceria ceramic electrolytes since this effect has already been investigated for Gd, Sm and Y doped ceria electrolytes. The desired goal with the use of a sintering aid is to reduce the sintering temperature aiming to produce dense ceramics. In this study we investigated the effects on densification, microstructure and ionic conduction caused by different molar fraction of the dopants europium (10, 15 and 20%) and gallium oxide (0.3, 0.6 and 0.9%) in samples sintered at 1300, 1350 and 1450 0 C. Samaria (10 and 20%) doped ceria samples sintered between 1350 and 1450 °C were used as reference. Samples were synthesized using the cation complexation method. The ceramics powders were characterized by XRF, XRD and SEM, while the sintered samples were investigated by its relative density, SEM and impedance spectroscopy. It was showed that gallia contents up to 0.6% act as excellent sintering aids in Eu doped ceria. Above this aid content, gallia addition does not promote significant increase in density of the ceramics. In Ga free samples the larger densification were accomplished with Eu 15% molar, effect expressed in the microstructure with higher grain growth although reduced and surrounded by many open pores. Relative densities greater than 95 % were obtained by sintering between 1300 and 1350 °C against the usual range 1500 - 1600 0 C. Samples containing 10% of Sm and 0.9% of Ga reached 96% of theoretical density by sintering at 1350 0 C for 3h, a gain compared to 97% achieved with 20% of Sm and 1% of Ga co-doped cerias sintered at 1450 0 C for 24 h as described in the literature. It is found that the addition of gallia in the Eu doped ceria has a positive effect on the grain conductivity and a negative one in the grain boundary conductivity resulting in a small decrease in the total conductivity which will not compromise its application as sintering aids in ceria based electrolytes. Typical total conductivity values at 600 and 700 °C, around 10 and 30 mS.cm -1 respectively were reached in this study. Samples with 15% of Eu and 0.9 % of Ga sintered at 1300 and 1350 °C showed relative densities greater than 96% and total conductivity (measured at 700 °C) between 20 and 33 mS.cm -1 . The simultaneous sintering of the electrolyte with the anode is one of the goals of research in materials for SOFCs. The results obtained in this study suggest that dense Eu and Ga co-doped ceria electrolytes with good ionic conductivity can be sintered simultaneously with the anode at temperatures below 1350 °C, the usual temperature for firing porous anode materials