6 resultados para Y-Ba-Nb-Cu-O
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The Nb-Cu pseudoalloys present themselves as potential substitutes for the alloys from a well known system and already commercially applied, as the W-Cu alloys, used in applications such as heat sinks, electrical contacts and coils for the generation of high magnetic fields. Because it is an immiscible system, where there is mutual insolubility and low wettability of the liquid Cu on the Nb surface, the processing route used in this work was the Powder Metallurgy. Two Nb alloys were used, with additions of 10% and 20% in weight of Cu, and times of 20, 30 and 40 hours for the high energy milling of the starting powders. The milling evolution of the powders is presented through the characterization techniques, such as the LASER diffraction for particle size, XRD, SEM, EDS, DSC, dilatometry, TEM and chemical analysis. After the milling, portions of the loads were submitted to the annealing heat treatment. The process used for the samples consolidation was the hot pressing, which has been applied both on some milled powders samples, as on the annealed powders. Subsequent heat treatments were performed in the samples at temperatures of 1000ºC (solid phase) and 1100ºC (in the Cu liquid phase). All sets of consolidated samples, and also the two sets of the heat treated, were analyzed by XRD, SEM, EDS, density and Vickers microhardness. Moreover, other Nb powder samples with 10% and 20% in weight of Cu obtained by simple mechanical mixing, were consolidated, thermally treated and characterized with the same techniques applied to the others, and the results were compared among themselves. Despite the difficulty of consolidation and densification of the two pseudoalloys of the Nb-Cu system of this study, on the route that passes through the HEM, samples were obtained with densities around 90% of the theoretical density. And, on the processing route of which were only mixed, the values reached up to 97%. Therefore, in this work are also emphasized the processes that made possible these results.
Resumo:
In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite
Resumo:
In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite
Resumo:
There is great difficulty in forming a composite refractory metal niobium with copper. This is due to the fact that Nb-Cu system is almost mutually immiscible and may be neglected solubility between them. These properties hinder or prevent obtaining homogeneous and high-density structures, conventionally prepared. This study aims to analyze the use of high-energy milling process (MAE) to implement these natural difficulties, with regard to the densification of the sintered bodies. The MAE and the press were used in the preparation of powders, to obtain a fine and homogeneous distribution of the grain size. Four loads Nb and Cu powders containing 15% by weight of Cu were then milled for MAE in a planetary type ball mill under various milling times and speeds. The results obtained by MAE were analyzed by scanning electron microscopy (SEM), according to the parameters of time and grinding speed. The samples were compacted under pressure of 200 MPa, were then sintered in liquid phase in a vacuum furnace at temperatures of 1100 ° C / 60 min and 1200 ° C / 60 min. Then it was used to characterize diffraction of X-rays to identify the phases. The microstructures of the sintered samples were observed and evaluated using scanning electron microscopy (SEM). Vickers Microhardness tests were performed, obtaining higher values for the sintered bodies in the largest of the post milling times and the larger grinding speeds. It was found that the liquid phase sintering of the samples that were processed by MAE produced at the end of a homogeneous and densified structure in 77,4% relative to the value of the theoretical density of the composite
Resumo:
The Curimataú estuary is located in the oriental coast of Rio Grande do Norte State in Brazil. Its importance resides in the fact that this region possesses one of the last portions of preserved mangrove in the Rio Grande do Norte State. Nevertheless, it has been severely affected by many anthropogenic activities, as sugarcane monoculture and shrimp farming. Former works demonstrated that an accumulation of heavy metals is occurring in oysters in this estuary, and perhaps it could be explained by the input of metals in this ecosystem deriving from the shrimp farming. To better understanding the origin of these metals, bottom sediment samples, cores and suspended particulate matter were collected for a characterization of metal concentrations (Al, Ba, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn) and to determine the potentially bioavailable metals. Additionally, the enrichment ratio for each element analyzed was calculated. The mineralogical composition of sediment samples and cores were obtained by X-ray diffraction. Moreover, data of orbital remote sensing were used in order to detect and quantify suspended matter by applying a logarithmic algorithm. Geochemical data of bottom sediments and cores revealed that, excepting Ba and Pb, the elements analyzed presented concentrations characteristic of an unpolluted ecosystem (Al: 0,25 - 8,76 %; Ba: 3,03 - 870 µg.g-1; Cd: < 0,25 µg.g-1; Cr: 1,72 - 82,4 µg.g-1; Cu: 0,12 -25,3 µg.g-1; Pb: 0,38 - 23,7 µg.g-1; Fe: 0,10 - 5,82 %; Mn: 15,1 - 815 µg.g-1; Ni: 0,14 - 36,1 µg.g-1; Zn: 1,37 - 113 µg.g-1). During the dry season a distribution pattern was observed, with higher metal concentrations in the margins, decreasing toward the central portion of the channel. These metal concentrations were well correlated with mineralogical compositions, with clay minerals prevailing at the margins, and quartz and feldspar in the center. However, this pattern was not observed during the wet season, probably because of the high water flux that disturbed bottom sediments. But, as observed for the dry season, a good correlation between metal concentrations and mineralogical composition was also observed for the wet season, with high metal concentrations where there were high quantities of clay minerals. Low enrichment ratios were obtained for the majority of elements analyzed, excepting for Mn, Ba and Pb. Manganese presented the higher ratios downstream for both seasons, and it can be an evidence of anthropogenic impact by shrimp farming. As barium and lead concentrations in sediment samples presented analytical problems during the total sample digestion, one cannot be sure that the ratios obtained correspond to the reality. The highest metal concentrations in particulate matter were obtained in the portion dominated by fluvial transport for all metals analyzed, excepting for copper. Barium and zinc were the only elements that presented elevated concentrations that are not common of unpolluted ecosystems (Ba: 5730 - 8355 µg.g-1; Zn: 3899 - 4348 µg.g-1). However, these high concentrations could not be related to the shrimp farming and waste waters from the town of Canguaretama, once they were obtained from the fluvial particulate matter, that is upstream from the activities above mentioned. The application of the logarithmic algorithm to the processed LANDSAT image was well succeeded, although the acquired image does not correspond exactly to the field campaigns. The IKONOS image provided very detailed views of the suspended sediment concentration at the estuary, as the mixture of distinct water flows at the confluence of Cunhaú and Curimataú rivers, with more turbid waters from Cunhaú river, that is directly affected by effluents from shrimp farming and urban waste waters deriving from the town of Canguaretama
Resumo:
Heavy metals can cause problems of human poisoning by ingestion of contaminated food, and the environment, a negative impact on the aquatic fauna and flora. And for the presence of these metals have been used for aquatic animals biomonitoramento environment. This research was done in order to assess the environmental impact of industrial and domestic sewage dumped in estuaries potiguares, from measures of heavy metals in mullet. The methods used for these determinations are those in the literature for analysis of food and water. Collections were 20 samples of mullet in several municipality of the state of Rio Grande do Norte, from the estuaries potiguares. Were analyzed the content of humidity, ash and heavy metals. The data were subjected to two methods of exploratory analysis: analysis of the main components (PCA), which provided a multivariate interpretation, showing that the samples are grouped according to similarities in the levels of metals and analysis of hierarchical groupings (HCA), producing similar results. These tests have proved useful for the treatment of the data producing information that would hardly viewed directly in the matrix of data. The analysis of the results shows the high levels of metallic species in samples Mugil brasiliensis collected in Estuaries /Potengi, Piranhas/Açu, Guaraíra / Papeba / Arês and Curimataú