4 resultados para Xanthan

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of the rheology of drilling fluids is of fundamental importance to select the best composition and the best treatment to be applied in these fluids. This work presents a study of the rheological behavior of some addictives used as viscosifiers in water-based drilling fluids. The evaluated addictives were: Carboxymethylcellulose (CMC), Xanthan gum (GX), and Bentonite. The main objective was to rheologically characterize suspensions composed by these addictives, by applying mathematical models for fluid flow behavior, in order to determine the best flow equation to represent the system, as well as the model parameters. The mathematical models applied in this research were: the Bingham Model, the Ostwald de Wale Model, and the Herschel-Bulkley Model. A previous study of hydration time for each used addictive was accomplished seeking to evaluate the effect of polymer and clay hydration on rheological behavior of the fluid. The rheological characterization was made through typical rheology experiments, using a coaxial cylinder viscosimeter, where the flow curves and the thixotropic magnitude of each fluid was obtained. For each used addictive the rheological behavior as a function of temperature was also evaluated as well as fluid stability as a function of the concentration and kind of addictive used. After analyses of results, mixtures of polymer and clay were made seeking to evaluate the rheological modifications provided by the polymer incorporation in the water + bentonite system. The obtained results showed that the Ostwald de Waale model provided the best fit for fluids prepared using CMC and for fluids with Xanthan gum and Bentonite the best fit was given by the Herschel-Bulkley one

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed mainly to evaluate the influence of xanthan gum (XG) and carboxymethylcellulose (CMC) in the filtration process of water-based drilling fluids, considering the conformational changes suffered by the polyelectrolyte with the addition of sodium chloride (NaCl) in different concentrations (0.17, 0.34 and 0.51 mol.L-1). It was also evaluated the behavior of the fluid by the addition of calcium carbonate (CaCO3) in pure water and in brine. Seeking a better understanding of the interaction between the polymers used and CaCO3, polymer adsorption analyzes were performed using a depletion method, which yielded a higher percentage of adsorption of Xanthan Gum in this material (29%), which can justify the formation of a thin and waterproof filter cake for drilling fluids containing this polymer. However, the best values of apparent viscosity (20 and 24 mPa.s) and volume of filtrate (8.0 and 8.1 mL) were obtained for the systems consisting of xanthan gum, CMC and CaCO3, in NaCl aqueous solutions concentrations of 0.34 and 0.51 mol.L-1, respectively. The values can be related to the presence of CMC that increases the apparent viscosity and reduces the volume of filtrate. In addition, the CaCO3 added acts as a bridging agent, promoting the formation of a less permeable filter cake

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoemulsions are emulsified systems, characterized for reduced droplet size (50- 500nm), which the main characteristic are kinect stability and thermodynamic instability. These are promising systems on cosmetic area due to their droplet size that provide different advantages when compared to conventional systems, among others, larger surface area and better permeability. The Opuntia ficus-indica (L.) Mill is a plant cultivated on Caatinga Brazilian biome, which has great socioeconomic importance to region. This plant shows carbohydrates utilized for cosmetic industry as moisturizing active in their chemical composition. The aim of study was to develop, characterize, evaluate stability and moisturizing efficacy of cosmetic nanoemulsions added to Opuntia ficus-indica (L.) Mill extract. Nanoemulsions preparation was made using a low energy method. Different nanoemulsions were formulated varying the ratio of oil, water and surfactant phases beyond xanthan gum (0.5% e 1%) and Opuntia ficus-indica (L.) Mill hydroglycolic extract addition on 1% and 3%. Obtained nanoemulsions were submitted to preliminary and accelerated stability tests. The evaluated parameters monitored were: macroscopic aspect, pH value, droplet size, zeta potential and polydispersion index, during 60 days on different temperatures. Stable formulations were submitted to moisturizing efficacy assessment by capacitance and transepidermal water loss methodologies during 5 hours. Stable samples were white and showed homogeneous and fluid aspect, pH value was inside ideal range (4,5-6,0) to topical application and droplet size under 200nm characterizing these system as nanoemulsions. Developed nanoemulsions did not decrease transepidermal water loss, however increased the water content on stratum corneum, highlighting the nanoemulsions containing 0.5% of xanthan gum and 1% of hydroglycolic extract. This work presents cosmetic moisturizing nanoemulsions composed to vegetal raw material from Brazilian Caatinga with potential to be used on cosmetic area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated the effect of addition of partially hydrolyzed polyacrylamide (HPAM) and bentonite in the physicochemical properties of acquous drilling fluids. Two formulations were evaluated: F1 formulation, which was used as reference, containing carboxymethylcellulose (CMC), magnesium oxide (MgO), calcite (calcium carbonate - CaCO3 ), xanthan gum, sodium chloride (NaCl) and triazine (bactericidal); and F2, containig HPAM steady of CMC and bentonite in substituition of calcite. The prepared fluids were characterized by rheological properties, lubricity and fluid loss. Calcite was characterized by granulometry and thermal gravimetric analysis (TGA). The formulation F2 presented filtration control at 93◦C 34 mL while F1 had total filtration. The lubricity coefficient was 0.1623 for F2 and 0.2542 for F1, causing reduction in torque of 25% for F1 and 52 % for F2, compared to water. In the temperature of 49 ◦C and shear rate of 1022 s −1 , the apparent viscosities were 25, 5 and 48 cP for F1 and F2 formulation, respectively, showing greater thermal resistance to F2. With the confirmation of higher thermal stability of F2, factorial design was conducted in order to determine the HPAM and of bentonite concentrations that resulted in the better performance of the fluids. The statistical design response surfaces indicated the best concentrations of HPAM (4.3g/L) and bentonite (28.5 g/L) to achieve improved properties of the fluids (apparent viscosity, plastic viscosity, yield point and fluid loss) with 95% confidence, as well as the correlations between these factors (HPAM and bentonite concentrations). The thermal aging tests indicated that the formulations containing HPAM and bentonite may be used to the maximum temperature until 150 ◦C. The analyze of the filter cake formed after filtration of fluids by X-ray diffraction showed specific interactions between the bentonite and HPAM, explaining the greater thermal stability of F2 compared to the fluid F1, that supports maximum temperature of 93 ◦C.