5 resultados para Wilhite, Clayton

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interstitial compounds of titanium have been mainly studied due to the large range of properties acquired when C, N, O and H atoms are added. In this work, surfaces of TiCxNy were produced by thermochemical treatments assisted by plasma with different proportions of Ar + N2 + CH4 gas mixture. The Ar gas flow was fixed in 4 sccm, varying only N2 and CH4 gas flows. During the thermochemical treatment, the plasma was monitored by Optical Emission Spectroscopy (OES) for the investigation of the influence of active species. After treatments, C and N concentration profile, crystalline and amorphous phases were analyzed by Nuclear Reaction (NRA). Besides tribomechanical properties of the Ti surface were studied through the nanohardness measurements and friction coefficient determination. The worn areas were evaluated by profilometry and Scanning Electronic Microscope (SEM) in order to verify the wear mechanism present in each material. It has been seen which the properties like nanohardness and friction coefficient have strong relation with luminous intensity of species of the plasma, suggesting a using of this characteristic as a parameter of process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma diagnostics by Optical Emission Spectroscopy were performed for electrical discharge in three gas mixture respecting the combinations z N2 y Ar x H2, z N2 y Ar x O2 e z N2 y Ar x CH4, in which the indexes z and y systematically vary from 1 to 4 and x varies from 0 to 4, every one has dimension SCCM, resulting in 80 combinations. From the all obtained spectrums, the species CH (387,1 nm), N2+ (391,4 nm), Hβ (486,1 nm), Hα (656,3 nm), Ar (750,4 nm), O (777,4 nm) e O (842,6 nm) were analyzed because of their abundance and importance on the kinetic of reaction from the plasma to surface, besides their high dependences on the gases flows. Particularly interesting z, y and x combinations were chosen in order to study the influence of active species on the surface modification during the thermochemical treatment. From the mixtures N2 Ar O2 e N2 Ar CH4 were chosen three peculiar proportions which presented luminous intensity profile with unexpected maximum or minimum values, denominated as plasma anomaly. Those plasma concentrations were utilized as atmosphere of titanium treatment maintaining constant the control parameters pressure and temperature. It has been verified a relation among luminous intensity associated to N2+ and roughness, nanohardness and O atoms diffusion into the crystalline lattice of treated titanium and it has been seen which those properties becomes more intense precisely in the higher points found in the optical profile associated to the N2+ specie. Those parameters were verified for the mixture which involved O2 gas. For the mixture which involves CH4 gas, the relation was determinate by roughness, number of nitrogen and carbon atoms diffused into the titanium structure which presented direct proportionality with the luminous intensity referent to the N2+ and CH. It has been yet studied the formation of TiCN phases on the surface which presented to be essentially directly proportional to the increasing of the CH specie and inversely proportional to the increasing of the specie N2+

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the results, analyses and conclusions about a study carried out with objective of minimizing the thermal cracks formation on cemented carbide inserts during face milling. The main focus of investigation was based on the observation that milling process is an interrupted machining process, which imposes cyclic thermal loads to the cutting tool, causing frequent stresses changes in its superficial and sub-superficial layers. These characteristics cause the formation of perpendicular cracks from cutting edge which aid the cutting tool wear, reducing its life. Several works on this subject emphasizing the thermal cyclic behavior imposed by the milling process as the main responsible for thermal cracks formation have been published. In these cases, the phenomenon appears as a consequence of the difference in temperature experienced by the cutting tool with each rotation of the cutter, usually defined as the difference between the temperatures in the cutting tool wedge at the end of the cutting and idle periods (T factor). Thus, a technique to minimize this cyclic behavior with objective of transforming the milling in an almost-continuous process in terms of temperature was proposed. In this case, a hot air stream was applied into the idle period, during the machining process. This procedure aimed to minimize the T factor. This technique was applied using three values of temperature from the hot air stream (100, 350 e 580 oC) with no cutting fluid (dry condition) and with cutting fluid mist (wet condition) using the hot air stream at 580oC. Besides, trials at room temperature were carried out. Afterwards the inserts were analyzed using a scanning electron microscope, where the quantity of thermal cracks generated in each condition, the wear and others damages was analyzed. In a general way, it was found that the heating of the idle period was positive for reducing the number of thermal cracks during face milling with cemented carbide inserts. Further, the cutting fluid mist application was effective in reducing the wear of the cutting tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interstitial compounds of titanium have been mainly studied due to the large range of properties acquired when C, N, O and H atoms are added. In this work, surfaces of TiCxNy were produced by thermochemical treatments assisted by plasma with different proportions of Ar + N2 + CH4 gas mixture. The Ar gas flow was fixed in 4 sccm, varying only N2 and CH4 gas flows. During the thermochemical treatment, the plasma was monitored by Optical Emission Spectroscopy (OES) for the investigation of the influence of active species. After treatments, C and N concentration profile, crystalline and amorphous phases were analyzed by Nuclear Reaction (NRA). Besides tribomechanical properties of the Ti surface were studied through the nanohardness measurements and friction coefficient determination. The worn areas were evaluated by profilometry and Scanning Electronic Microscope (SEM) in order to verify the wear mechanism present in each material. It has been seen which the properties like nanohardness and friction coefficient have strong relation with luminous intensity of species of the plasma, suggesting a using of this characteristic as a parameter of process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma diagnostics by Optical Emission Spectroscopy were performed for electrical discharge in three gas mixture respecting the combinations z N2 y Ar x H2, z N2 y Ar x O2 e z N2 y Ar x CH4, in which the indexes z and y systematically vary from 1 to 4 and x varies from 0 to 4, every one has dimension SCCM, resulting in 80 combinations. From the all obtained spectrums, the species CH (387,1 nm), N2+ (391,4 nm), Hβ (486,1 nm), Hα (656,3 nm), Ar (750,4 nm), O (777,4 nm) e O (842,6 nm) were analyzed because of their abundance and importance on the kinetic of reaction from the plasma to surface, besides their high dependences on the gases flows. Particularly interesting z, y and x combinations were chosen in order to study the influence of active species on the surface modification during the thermochemical treatment. From the mixtures N2 Ar O2 e N2 Ar CH4 were chosen three peculiar proportions which presented luminous intensity profile with unexpected maximum or minimum values, denominated as plasma anomaly. Those plasma concentrations were utilized as atmosphere of titanium treatment maintaining constant the control parameters pressure and temperature. It has been verified a relation among luminous intensity associated to N2+ and roughness, nanohardness and O atoms diffusion into the crystalline lattice of treated titanium and it has been seen which those properties becomes more intense precisely in the higher points found in the optical profile associated to the N2+ specie. Those parameters were verified for the mixture which involved O2 gas. For the mixture which involves CH4 gas, the relation was determinate by roughness, number of nitrogen and carbon atoms diffused into the titanium structure which presented direct proportionality with the luminous intensity referent to the N2+ and CH. It has been yet studied the formation of TiCN phases on the surface which presented to be essentially directly proportional to the increasing of the CH specie and inversely proportional to the increasing of the specie N2+