2 resultados para Weighted regression
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The study aims to answer the following question: what are the different profiles of infant mortality, according to demographic, socioeconomic, infrastructure and health care, for the micro-regions at the Northeast of Brazil? Thus, the main objective is to analyze the profiles or typologies associated mortality levels sociodemographic conditions of the micro-regions, in the year 2010. To this end, the databases of birth and death certificates of SIM and SINASC (DATASUS/MS), were taken from the 2010 population Census microdata and from SIDRA/IBGE. As a methodology, a weighted multiple linear regression model was used in the analysis in order to find the most significant variables in the explanation child mortality for the year 2010. Also a cluster analysis was performed, seeking evidence, initially, of homogeneous groups of micro-regions, from of the significant variables. The logit of the infant mortality rate was used as dependent variable, while variables such as demographic, socioeconomic, infrastructure and health care in the micro-regions were taken as the independent variables of the model. The Bayesian estimation technique was applied to the database of births and deaths, due to the inconvenient fact of underreporting and random fluctuations of small quantities in small areas. The techniques of Spatial Statistics were used to determine the spatial behavior of the distribution of rates from thematic maps. In conclusion, we used the method GoM (Grade of Membership), to find typologies of mortality, associated with the selected variables by micro-regions, in order to respond the main question of the study. The results points out to the formation of three profiles: Profile 1, high infant mortality and unfavorable social conditions; Profile 2, low infant mortality, with a median social conditions of life; and Profile 3, median and high infant mortality social conditions. With this classification, it was found that, out of 188 micro-regions, 20 (10%) fits the extreme profile 1, 59 (31.4%) was characterized in the extreme profile 2, 34 (18.1%) was characterized in the extreme profile 3 and only 9 (4.8%) was classified as amorphous profile. The other micro-regions framed up in the profiles mixed. Such profiles suggest the need for different interventions in terms of public policies aimed to reducing child mortality in the region
Resumo:
This work aims to study the problem of the formal job in the Brazilian Northeast region and its effect in the social inclusion, taking for base the analysis of variables defined in the Atlas of Social Exclusion, which is based on the 2000 Brazilian Census, choosing the county as unit of analysis. As methodological options, an exploratory data analysis was performed, followed by multivariate statistical techniques, such as weighted multiple regression analysis, cluster analysis and exploratory analysis of spatial data. The results pointed out to low rates of formal job for the active age population as well as low indexes of social inclusion in the Northeast region of Brazil. A strong association of the formal job with the indicators of social inclusion under investigation, was evidenced (schooling, inequality, poverty, youth and income form government transfers), as well as a strong association of the formal job with the new index of social inclusion (IIS), modified from the IES. At the Federative Units, in which better levels of formal job had been found, good indexes of social inclusion are also observed. Highlights for the state of the Rio Grande do Norte, with the best conditions of life, and for the states of the Maranhão and Piauí, with the worst conditions. The situation of the Northeast region, facing the indicators under study, is very precarious, claiming for the necessity of emphasizing programs and governmental actions, specially directed to the raise of formal job levels of the region, reflecting, thus, in improvements on the income inequality, as well as in the social inclusion of the population of Northeastern natives.