2 resultados para WATER ESCAPE STRUCTURES

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geological and geophysical studies (resistivity, self potential and VLF) were undertaken in the Tararaca and Santa Rita farms, respectively close to the Santo Antônio and Santa Cruz villages, eastern Rio Grande do Norte State, NE Brazil. Their aim was to characterize water acummulation structures in crystalline rocks. Based on geological and geophysical data, two models were characterized, the fracture-stream and the eluvio-alluvial through, in part already described in the literature. In the Tararaca Farm, a water well was located in a NW-trending streamlet; surrounding outcrops display fractures with the same orientation. Apparent resistivity sections, accross the stream channel, confirm fracturing at depth. The VLF profiles systematically display an alignment of equivalent current density anomalies, coinciding with the stream. Based on such data, the classical fracture-stream model seems to be well characterized at this place. In the Santa Rita Farm, a NE-trending stream display a metric-thick eluvioregolith-alluvial cover. The outcropping bedrock do not present fractures paralell to the stream direction, although the latter coincides with the trend of the gneiss foliation, which dips to the south. Geophysical data confirm the absence of a fracture zone at this place, but delineate the borders of a through-shaped structure filled with sediments (alluvium and regolith). The southern border of this structure dips steeper compared to the northern one. This water acummulation structure corresponds to an alternative model as regards to the classical fracture-stream, being named as the eluvio-alluvial trough. Its local controls are the drainage and relief, coupled with the bedrock weathering preferentially following foliation planes, generating the asymmetry of the through

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concrete for centuries constituted an essential structural element in the construction industry due to its relative ease of forming, before the weather durability, low cost, its lower maintenance compared to other materials such as steel. However, when the concrete is exposed to high temperatures tends to lose its mechanical characteristics, and may even result in loss of section, which undermines the stability and mechanical strength of structural elements. The pathologies resulting from exposure to elevated temperatures ranging from cracks, pops up chipping explosives (spalling). Recently, the technology of concrete is closely related to the study of its microstructure. The use of fibers added to concrete has been revealed as a solution to increase the mechanical strength of the concrete, it acts directly on the distribution of efforts to act in the play within the microstructure. In this work we used recycled PET fibers embedded in concrete with 15x2mm fck = 30MPa, water/cement ratio of 0.46, in works made for verification of mechanical strength of this mixture submitted to high temperature. The specimens of concrete with addition of PET fibers were tested after exposure to temperatures: ambient (30ºC), 100°C, 200°C, 300°C, 400°C, 600°C and 900°C. It was found that the concrete loses significant strength when exposed to temperatures above 300°C, however the use of fiber PET may delay the risk of collapse of structures for the formation of a network of channels that facilitate the escape of vapor 'water, reducing the pore pressure inside the structural element