3 resultados para Video segmentation
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The segmentation of an image aims to subdivide it into constituent regions or objects that have some relevant semantic content. This subdivision can also be applied to videos. However, in these cases, the objects appear in various frames that compose the videos. The task of segmenting an image becomes more complex when they are composed of objects that are defined by textural features, where the color information alone is not a good descriptor of the image. Fuzzy Segmentation is a region-growing segmentation algorithm that uses affinity functions in order to assign to each element in an image a grade of membership for each object (between 0 and 1). This work presents a modification of the Fuzzy Segmentation algorithm, for the purpose of improving the temporal and spatial complexity. The algorithm was adapted to segmenting color videos, treating them as 3D volume. In order to perform segmentation in videos, conventional color model or a hybrid model obtained by a method for choosing the best channels were used. The Fuzzy Segmentation algorithm was also applied to texture segmentation by using adaptive affinity functions defined for each object texture. Two types of affinity functions were used, one defined using the normal (or Gaussian) probability distribution and the other using the Skew Divergence. This latter, a Kullback-Leibler Divergence variation, is a measure of the difference between two probability distributions. Finally, the algorithm was tested in somes videos and also in texture mosaic images composed by images of the Brodatz album
Resumo:
Image segmentation is the process of subdiving an image into constituent regions or objects that have similar features. In video segmentation, more than subdividing the frames in object that have similar features, there is a consistency requirement among segmentations of successive frames of the video. Fuzzy segmentation is a region growing technique that assigns to each element in an image (which may have been corrupted by noise and/or shading) a grade of membership between 0 and 1 to an object. In this work we present an application that uses a fuzzy segmentation algorithm to identify and select particles in micrographs and an extension of the algorithm to perform video segmentation. Here, we treat a video shot is treated as a three-dimensional volume with different z slices being occupied by different frames of the video shot. The volume is interactively segmented based on selected seed elements, that will determine the affinity functions based on their motion and color properties. The color information can be extracted from a specific color space or from three channels of a set of color models that are selected based on the correlation of the information from all channels. The motion information is provided into the form of dense optical flows maps. Finally, segmentation of real and synthetic videos and their application in a non-photorealistic rendering (NPR) toll are presented
Resumo:
Non-Photorealisitc Rendering (NPR) is a class of techniques that aims to reproduce artistic techniques, trying to express feelings and moods on the rendered scenes, giving an aspect of that they had been made "by hand". Another way of defining NPR is that it is the processing of scenes, images or videos into artwork, generating scenes, images or videos that can have the visual appeal of pieces of art, expressing the visual and emotional characteristics of artistic styles. This dissertation presents a new method of NPR for stylization of images and videos, based on a typical artistic expression of the Northeast region of Brazil, that uses colored sand to compose landscape images on the inner surface of glass bottles. This method is comprised by one technique for generating 2D procedural textures of sand, and two techniques that mimic effects created by the artists using their tools. It also presents a method for generating 21 2D animations in sandbox from the stylized video. The temporal coherence within these stylized videos can be enforced on individual objects with the aid of a video segmentation algorithm. The present techniques in this work were used on stylization of synthetic and real videos, something close to impossible to be produced by artist in real life