3 resultados para Vibração - Controle
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Smart structures and systems have the main purpose to mimic living organisms, which are essentially characterized by an autoregulatory behavior. Therefore, this kind of structure has adaptive characteristics with stimulus-response mechanisms. The term adaptive structure has been used to identify structural systems that are capable of changing their geometry or physical properties with the purpose of performing a specific task. In this work, a sliding mode controller with fuzzy inference is applied for active vibration control in an SMA two-bar truss. In order to obtain a simpler controller, a polynomial model is used in the control law, while a more sophisticated version, which presents close agreement with experimental data, is applied to describe the SMA behavior of the structural elements. This system has a rich dynamic response and can easily reach a chaotic behavior even at moderate loads and frequencies. Therefore, this approach has the advantage of not only obtaining a simpler control law, but also allows its robustness be evidenced. Numerical simulations are carried out in order to demonstrate the control system performance.
Resumo:
Smart structures and systems have the main purpose to mimic living organisms, which are essentially characterized by an autoregulatory behavior. Therefore, this kind of structure has adaptive characteristics with stimulus-response mechanisms. The term adaptive structure has been used to identify structural systems that are capable of changing their geometry or physical properties with the purpose of performing a specific task. In this work, a sliding mode controller with fuzzy inference is applied for active vibration control in an SMA two-bar truss. In order to obtain a simpler controller, a polynomial model is used in the control law, while a more sophisticated version, which presents close agreement with experimental data, is applied to describe the SMA behavior of the structural elements. This system has a rich dynamic response and can easily reach a chaotic behavior even at moderate loads and frequencies. Therefore, this approach has the advantage of not only obtaining a simpler control law, but also allows its robustness be evidenced. Numerical simulations are carried out in order to demonstrate the control system performance.
Resumo:
Slugging is a well-known slugging phenomenon in multiphase flow, which may cause problems such as vibration in pipeline and high liquid level in the separator. It can be classified according to the place of its occurrence. The most severe, known as slugging in the riser, occurs in the vertical pipe which feeds the platform. Also known as severe slugging, it is capable of causing severe pressure fluctuations in the flow of the process, excessive vibration, flooding in separator tanks, limited production, nonscheduled stop of production, among other negative aspects that motivated the production of this work . A feasible solution to deal with this problem would be to design an effective method for the removal or reduction of the system, a controller. According to the literature, a conventional PID controller did not produce good results due to the high degree of nonlinearity of the process, fueling the development of advanced control techniques. Among these, the model predictive controller (MPC), where the control action results from the solution of an optimization problem, it is robust, can incorporate physical and /or security constraints. The objective of this work is to apply a non-conventional non-linear model predictive control technique to severe slugging, where the amount of liquid mass in the riser is controlled by the production valve and, indirectly, the oscillation of flow and pressure is suppressed, while looking for environmental and economic benefits. The proposed strategy is based on the use of the model linear approximations and repeatedly solving of a quadratic optimization problem, providing solutions that improve at each iteration. In the event where the convergence of this algorithm is satisfied, the predicted values of the process variables are the same as to those obtained by the original nonlinear model, ensuring that the constraints are satisfied for them along the prediction horizon. A mathematical model recently published in the literature, capable of representing characteristics of severe slugging in a real oil well, is used both for simulation and for the project of the proposed controller, whose performance is compared to a linear MPC