10 resultados para Vehicle Routing Problem Multi-Trip Ricerca Operativa TSP VRP
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This paper aims to propose a hybrid meta-heuristics for the Heterogeneous Fleet Vehicle Routing Problem (HVRP), which is a combinatorial optimization problem NP-hard, and is characterized by the use of a limited fleet consists of different vehicles with different capacities. The hybrid method developed makes use of a memetic algorithm associated with the component optimizer Vocabulary Building. The resulting hybrid meta-heuristic was implemented in the programming language C + + and computational experiments generated good results in relation to meta-heuristic applied in isolation, proving the efficiency of the proposed method.
Resumo:
This work approaches the Scheduling Workover Rigs Problem (SWRP) to maintain the wells of an oil field, although difficult to resolve, is extremely important economical, technical and environmental. A mathematical formulation of this problem is presented, where an algorithmic approach was developed. The problem can be considered to find the best scheduling service to the wells by the workover rigs, taking into account the minimization of the composition related to the costs of the workover rigs and the total loss of oil suffered by the wells. This problem is similar to the Vehicle Routing Problem (VRP), which is classified as belonging to the NP-hard class. The goal of this research is to develop an algorithmic approach to solve the SWRP, using the fundamentals of metaheuristics like Memetic Algorithm and GRASP. Instances are generated for the tests to analyze the computational performance of the approaches mentioned above, using data that are close to reality. Thereafter, is performed a comparison of performance and quality of the results obtained by each one of techniques used
Resumo:
This paper presents metaheuristic strategies based on the framework of evolutionary algorithms (Genetic and Memetic) with the addition of Technical Vocabulary Building for solving the Problem of Optimizing the Use of Multiple Mobile Units Recovery of Oil (MRO units). Because it is an NP-hard problem, a mathematical model is formulated for the problem, allowing the construction of test instances that are used to validate the evolutionary metaheuristics developed
Resumo:
Worldwide, the demand for transportation services for persons with disabilities, the elderly, and persons with reduced mobility have increased in recent years. The population is aging, governments need to adapt to this reality, and this fact could mean business opportunities for companies. Within this context is inserted the Programa de Acessibilidade Especial porta a porta PRAE, a door to door public transportation service from the city of Natal-RN in Brazil. The research presented in this dissertation seeks to develop a programming model which can assist the process of decision making of managers of the shuttle. To that end, it was created an algorithm based on methods of generating approximate solutions known as heuristics. The purpose of the model is to increase the number of people served by the PRAE, given the available fleet, generating optimized schedules routes. The PRAE is a problem of vehicle routing and scheduling of dial-a-ride - DARP, the most complex type among the routing problems. The validation of the method of resolution was made by comparing the results derived by the model and the currently programming method. It is expected that the model is able to increase the current capacity of the service requests of transport
Resumo:
This work consists on the study of two important problems arising from the operations of petroleum and natural gas industries. The first problem the pipe dimensioning problem on constrained gas distribution networks consists in finding the least cost combination of diameters from a discrete set of commercially available ones for the pipes of a given gas network, such that it respects minimum pressure requirements at each demand node and upstream pipe conditions. On its turn, the second problem the piston pump unit routing problem comes from the need of defining the piston pump unit routes for visiting a number of non-emergent wells in on-shore fields, i.e., wells which don t have enough pressure to make the oil emerge to surface. The periodic version of this problem takes into account the wells re-filling equation to provide a more accurate planning in the long term. Besides the mathematical formulation of both problems, an exact algorithm and a taboo search were developed for the solution of the first problem and a theoretical limit and a ProtoGene transgenetic algorithm were developed for the solution of the second problem. The main concepts of the metaheuristics are presented along with the details of their application to the cited problems. The obtained results for both applications are promising when compared to theoretical limits and alternate solutions, either relative to the quality of the solutions or to associated running time
Resumo:
Multi-objective combinatorial optimization problems have peculiar characteristics that require optimization methods to adapt for this context. Since many of these problems are NP-Hard, the use of metaheuristics has grown over the last years. Particularly, many different approaches using Ant Colony Optimization (ACO) have been proposed. In this work, an ACO is proposed for the Multi-objective Shortest Path Problem, and is compared to two other optimizers found in the literature. A set of 18 instances from two distinct types of graphs are used, as well as a specific multiobjective performance assessment methodology. Initial experiments showed that the proposed algorithm is able to generate better approximation sets than the other optimizers for all instances. In the second part of this work, an experimental analysis is conducted, using several different multiobjective ACO proposals recently published and the same instances used in the first part. Results show each type of instance benefits a particular type of instance benefits a particular algorithmic approach. A new metaphor for the development of multiobjective ACOs is, then, proposed. Usually, ants share the same characteristics and only few works address multi-species approaches. This works proposes an approach where multi-species ants compete for food resources. Each specie has its own search strategy and different species do not access pheromone information of each other. As in nature, the successful ant populations are allowed to grow, whereas unsuccessful ones shrink. The approach introduced here shows to be able to inherit the behavior of strategies that are successful for different types of problems. Results of computational experiments are reported and show that the proposed approach is able to produce significantly better approximation sets than other methods
Resumo:
The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.
Resumo:
The Traveling Salesman with Multiple Ridesharing (TSP-MR) is a type of the Capacitated Traveling Salesman, which presents the possibility of sharing seats with passengers taking advantage of the paths the salesman travels through his cycle. The salesman shares the cost of a path with the boarded passengers. This model can portray a real situation in which, for example, drivers are willing to share parts of a trip with tourists that wish to move between two locations visited by the driver’s route, accepting to share the vehicle with other individuals visiting other locations within the cycle. This work proposes a mathematical formulation for the problem, and an exact and metaheuristics algorithms for its solution, comparing them.
Resumo:
The decrease in crime is one of the core issues that cause concern in society today. This study aims to propose improvements to public safety from the choice of points to the location of police units, ie the points which support the car and the police. For this, three models were developed in order to assist decision making regarding the best placement of these bases. The Model of Police Units Routing has the intention to analyze the current configuration of a given region and develop optimal routes for round preventative. The Model of Allocation and Routing for New Police Units (MARNUP) used the model of facility location called p-median weighted and traveling salesman problem (TSP) combined aiming an ideal setting for regions that do not yet have support points or to assess how far the distribution is present in relation to that found in solution. The Model Redefinition and Routing Unit Police (MRRUP) seek to change the current positioning taking into account the budgetary constraints of the decision maker. To verify the applicability of these models we used data from 602 points to instances of police command that is responsible for the capital city of Natal. The city currently has 31 police units for 36 of these 19 districts and police have some assistance. This reality can lead to higher costs and higher response times for answering emergency calls. The results of the models showed that in an ideal situation it is possible to define a distance of 500 km/round, whereas in this 900 km are covered by approximately round. However, a change from three-point lead reduced to 700 km / round which represents a decrease of 22% in the route. This reduction should help improve response time to emergency care, improving the level of service provided by the increase of solved cases, reducing police shifts and routing preventive patrols
Resumo:
We propose a new paradigm for collective learning in multi-agent systems (MAS) as a solution to the problem in which several agents acting over the same environment must learn how to perform tasks, simultaneously, based on feedbacks given by each one of the other agents. We introduce the proposed paradigm in the form of a reinforcement learning algorithm, nominating it as reinforcement learning with influence values. While learning by rewards, each agent evaluates the relation between the current state and/or action executed at this state (actual believe) together with the reward obtained after all agents that are interacting perform their actions. The reward is a result of the interference of others. The agent considers the opinions of all its colleagues in order to attempt to change the values of its states and/or actions. The idea is that the system, as a whole, must reach an equilibrium, where all agents get satisfied with the obtained results. This means that the values of the state/actions pairs match the reward obtained by each agent. This dynamical way of setting the values for states and/or actions makes this new reinforcement learning paradigm the first to include, naturally, the fact that the presence of other agents in the environment turns it a dynamical model. As a direct result, we implicitly include the internal state, the actions and the rewards obtained by all the other agents in the internal state of each agent. This makes our proposal the first complete solution to the conceptual problem that rises when applying reinforcement learning in multi-agent systems, which is caused by the difference existent between the environment and agent models. With basis on the proposed model, we create the IVQ-learning algorithm that is exhaustive tested in repetitive games with two, three and four agents and in stochastic games that need cooperation and in games that need collaboration. This algorithm shows to be a good option for obtaining solutions that guarantee convergence to the Nash optimum equilibrium in cooperative problems. Experiments performed clear shows that the proposed paradigm is theoretical and experimentally superior to the traditional approaches. Yet, with the creation of this new paradigm the set of reinforcement learning applications in MAS grows up. That is, besides the possibility of applying the algorithm in traditional learning problems in MAS, as for example coordination of tasks in multi-robot systems, it is possible to apply reinforcement learning in problems that are essentially collaborative