23 resultados para Vegetal extraction

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human interference in the semiarid region of Seridó Potiguar has promoted the increase of degraded areas. The economic dynamic that was established in the Seridó territory, especially after the fall of the trinomial cattle-cotton-mining in the 70s and 80s of the 20th century as pillars of the regional economy, resulted in an accelerated process of erosion of natural resources. The municipalities of the Seridó region have been spatially reordered by this new economic dynamic, marked by the growth of existing enterprises, and the development of new agricultural practices. One of the municipalities in the region that restructured its territorial space with the emergence of new agro-industrial activities was the town of Parelhas. With the demise of the trinomial cattle-cotton-mining in the 1980s, other productive activities were intensified from the 1990s, amongst them, pottery, responsible for the vegetal extraction for use as energy source. This recent economic and spatial restructuring in the region, reflected in the Parelhense municipal territory, required new productive ingredients responsible for the modification of past production relations that were based on cattle, cotton and mining. By that a process of exploring the environment was unleashed, especially the native vegetation, in an uncontrolled manner. In this context, the objective of this study was to survey and detect deforestation in the areas of Caatinga vegetation, used indiscriminately as energy supply for new agricultural practices, using remote sensing techniques based on the quantification of the Normalized Difference Vegetation Index / NDVI, Soil-Adjusted Vegetation Index / SAVI, surface temperature and rainfall data in the years 1990 and 2010. The results indicated that SAVI values above 0.2 in 1990 and 2010 represent the areas with the highest density of vegetation that occur exclusively along the major drainages in the town and areas of higher elevations. The areas between the ranges of values from 0.5 to 0.15 SAVI are areas with poor vegetation. On the other hand the highest values of temperature are distributed in the western and southeastern parts of the township, usually in places where the soil is exposed or there is sparse vegetation. The areas of bare soil decreased in extension in 2010 at 11, 6% when related to 1990, this was caused by a higher rainfall intensity in the first half of 2010, but no regeneration of vegetation occurred in some places in the western and southeastern areas of the municipality today, due to the extraction of firewood to fuel the furnaces of industries in town

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of red ceramic is an industrial activity that causes an intense impact. The manufacture of its products considerably increases the demand for natural resources, mainly with the extraction of raw material. The ceramic material produced generates waste, such as ash firewood and chamote. The residue from the beneficiation of kaolin is deposited in a poor, degrades the environment and contaminate water sources and soil, constituting in this manner, ecological disasters. The main objective of this work is to develop the formulation of a ceramic product consisting solely of industrial solid wastes, from ceramic tiles, (chamote) residue of kaolin and ash firewood. It is assumed that this product made in the laboratory can be used in coatings, wall and floor. The aim is to facilitate the replacement of the raw material of original composition of a ceramic body, for waste, while the process of production equal to the conventionally used, so that the properties of the product are reproduced. This work is characterized waste as its chemical composition, analysis of particle size, X-ray diffraction and thermal behavior. Several formulations were studied. The mass of waste was prepared by dry process, pressed to 25 MPa, and then burned in muffle type oven to 850, 950, 1050 and 1150 °C. The results showed that it is technically possible to produce porous tiles only with waste. It was found that the formulations of bodies play a key role in the properties of the final product, as well as the sintering temperature and heating rates. RN in the waste of kaolin is estimated at 15,000 t/month, about 3,000 gray t/month and chamote with 10 million pieces/month damaged. The presence of carbonates of calcium and magnesium at 1050 ° C results in an appropriate porosity and mechanical strength. The formulation M3JE, composed of 69% waste of kaolin, 7.7% and 23.3% of chamote of gray, became suitable for porous materials with the strength and absorption within the level of national and international standards

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the oil industry is the biggest cause of environmental pollution. The objective was to reduce the concentration of copper and chromium in the water produced by the oil industry. It was used as adsorbent natural sisal fiber Agave sp treated with nitric acid and sodium hydroxide. All vegetable fibers have physical and morphological properties that enablies the adsorption of pollutants. The basic composition of sisal is cellulose, hemicellulose and lignin. The features are typically found in the characterization of vegetable fibers, except the surface area that was practically zero. In the first stage of adsorption, it was evaluated the effect of temperature and time skeeking to optimize the execution of the factorial design. The results showed that the most feasible fiber was the one treated with acid in five hours (30°C). The second phase was a factorial design, using acid and five hours, this time was it determined in the first phase. The tests were conducted following the experimental design and the results were analyzed by statistical methods in order to optimize the main parameters that influence the process: pH, concentration (mol / L) and fiber mass/ metal solution volume. The volume / mass ratio factor showed significant interference in the adsorption process of chromium and copper. The results obtained after optimization showed that the highest percentages of extraction (98%) were obtained on the following operating conditions: pH: 5-6, Concentration: 100 ppm and mass/ volume: 1 gram of fiber/50mL solution. The results showed that the adsorption process was efficient to remove chromium and copper using sisal fibers, however, requiring further studies to optimize the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actually in the oil industry biotechnological approaches represent a challenge. In that, attention to metal structures affected by electrochemical corrosive processes, as well as by the interference of microorganisms (biocorrosion) which affect the kinetics of the environment / metal interface. Regarding to economical and environmental impacts reduction let to the use of natural products as an alternative to toxic synthetic inhibitors. This study aims the employment of green chemistry by evaluating the stem bark extracts (EHC, hydroalcoholic extract) and leaves (ECF, chloroform extract) of plant species Croton cajucara Benth as a corrosion inhibitor. In addition the effectiveness of corrosion inhibition of bioactive trans-clerodane dehydrocrotonin (DCTN) isolated from the stem bark of this Croton was also evaluated. For this purpose, carbon steel AISI 1020 was immersed in saline media (3,5 % NaCl) in the presence and absence of a microorganism recovered from a pipeline oil sample. Corrosion inhibition efficiency and its mechanisms were investigated by linear sweep voltammetry and electrochemical impedance. Culture-dependent and molecular biology techniques were used to characterize and identify bacterial species present in oil samples. The tested natural products EHC, ECF and DCTN (DMSO as solvent) in abiotic environment presented respectively, corrosion inhibition efficiencies of 57.6% (500 ppm), 86.1% (500 ppm) and 54.5% (62.5 ppm). Adsorption phenomena showed that EHC best fit Frumkin isotherm and ECF to Temkin isotherm. EHC extract (250 ppm) dissolved in a polar microemulsion system (MES-EHC) showed significant maximum inhibition efficiency (93.8%) fitting Langmuir isotherm. In the presence of the isolated Pseudomonas sp, EHC and ECF were able to form eco-compatible organic films with anti-corrosive properties

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dengue, amongst the virus illnesses one can get by vectorial transmission, is the one that causes more impact in the morbidity and mortality of world s population. The resistance to the insecticides has caused difficulties to control of vector insect (Aedes aegypti) and has stimulated a search for vegetables with larvicidal activity. The biodiversity of Caatinga is barely known and it is potential of use even less. Some plants of this biome are commercialized in free fairs northeast of Brazil, because of its phytotherapics properties. The vegetables in this study had been selected by means of a questionnaire applied between grass salesmen and natives of the Serido region from Rio Grande do Norte state; culicids eggs had been acquired with traps and placed in container with water for the larva birth. Thirty larvae had been used in each group (a group control and five experimental groups), with four repetitions four times. The vegetables had been submitted to the processes of decoction, infusion and maceration in the standard concentration of 100g of the vegetable of study in 1l of H2O and analyzed after ½, 1, 2, 4, 8, 12, 24 and 48 hours for verification of the average lethal dose (LD50) from the groups with thirty larva. The LD50 was analyzed in different concentrations (50g/l, 100g/l, 150g/l, 200g/l e 300g/l) of Aspidosperma pyrifolium Mart. 48 extracts of rind, leaf and stem of the seven vegetal species: Aspidosperma pyrifolium Mart., Mimosa verrucosa Benth, Mimosa hostilis (Mart.) Benth., Myracrodruon urundeuva Allemão, Ximenia americana L, Bumelia sartorum Mart Zizyphus joazeiro Mart, had been analyzed. The extracts proceeding from the three methods were submitted to the freezedrying, to evaluate and to quantify substances extracted in each process. The results had shown that Aspidosperma pyrifolium Mart. and Myracrodruon urundeuva Allemão are the species that are more distinguished as larvicidal after 24 hours of experiment, in all used processes of extraction in the assays. The Zizyphus joazeiro Mart species has not shown larvicidal activity in none of the assays. In relation to the extraction method, the decoction was the most efficient method in the mortality tax of the A. aegypti larvae

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caatinga is an important laboratory for studies about arthropods adaptations and aclimatations because its precipitation is highly variable in time. We studied the effects of time variability over the composition of Arthropods in a caatinga area. The study was carried out at a preservation area on Almas Farm, São José dos Cordeiros, Paraíba. Samples were collected in two 100 m long parallel transects, separated for a 30 m distance, in a dense tree dominated caatinga area, between August 2007 and July 2008. Samples were collected in each transect every 10 m. Ten soil samples were taken from each transect, both at 0-5 cm (A) and 5-10 cm (B) depth, resulting in 40 samples each month. The Berlese funnel method was used for fauna extraction. We registered 26 orders and the arthropods density in the soil ranged from 3237 to 22774 individuals.m-2 from January 2007 to March 2008, respectively. There was no difference between layers A and B regarding orders abundance and richness. The groups recorded include groups with few records or that had no records in the Caatinga region yet as Pauropoda, Psocoptera, Thysanoptera, Protura and Araneae. Acari was the most abundant group, with 66,7% of the total number of individuals. Soil Arthropods presented a positive correlation with soil moisture, vegetal cover, precipitation and real evapotranspiration. Increases in fauna richness and abundance were registered in February, a month after the beginning of the rainy season. A periodic rain events in arid and semiarid ecosystems triggers physiological responses in edafic organisms, like arthropods. Edafic arthropods respond to time variability in the Caatinga biome. This fauna variation has to be considered in studies of this ecosystem, because the variation of Arthropods composition in soil can affect the dynamics of the food web through time

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kalanchoe brasiliensis Cambess (Crassulaceae), commonly known as saião , coirama branca , folha grossa , is originally from Brazil and commonly found in São Paulo to Bahia, mainly in the coastal zone. Regarding of biological activities, most preclinical studies were found in the literature, mainly about the anti-inflammatory activity of extracts obtained from leaves and / or aerial parts of K. brasiliensis. As regards the chemical constitution, it has been reported mainly the presence of flavonoids in the leaves of the species, but until this moment did not knows which are the active compounds. Although it is a species widely used in traditional medicine in Brazil, there is no monograph about the quality parameters of the plant drug. In this context, this study aims to characterize and quantify the chemical markers of hydroethanolic extract (HE) from the leaves of K. brasiliensis, which can be used in quality control of plant drug and derivatives obtained from this species. The methodology was divided into two parts: i. Phytochemical study: to fractionate, isolate and characterizate of the chemical (s) marker (s) of the HE from the leaves of K. brasiliensis; ii. To Developed validate of analytical method by High Performance Liquid Chromatography (HPLC)-diode array detector (DAD) to quantify the chemical (s) marker (s) of the EH. i. The EH 50% was prepared by turbo extraction method. It was then submitted to liquid-liquid partition, obtaining dichloromethane, n-butanol and ethyl acetate (AcOEt) fractions. The AcOEt fraction was selected to continue the fractionation process, because it has a chemical profile rich in flavonoids. The acOEt fraction was submitted to column chromatography using different systems for obtaining the compound Kb1. To identify this compound, it was submitted to UV analysis ii. For quantitative analysis, the EH was analyzed by HPLC, using different methods. After selecting the most appropriate method, which showed satisfactory resolution and symmetrical peaks, it was validated according to parameters in the RE 899/2003. As result, it was obtained from the AcOEt fraction the compound Kb1 (2.7 mg). Until this moment, the basic nucleus was characterized by UV analysis using shift reagents. The partial chemical structure of the compound Kb1 was identified as a flavonol, containing hydroxyls in 3 , 4 position (ring A), 5 and 7 free (ring B) and a replacement of the C3 hydroxyl by a sugar. As the analysis were performed in the HPLC coupled to a DAD, we observed that the UV spectrum of the major peaks of EH from K. brasiliensis shown similar UV spectrum. According to the literature, it has been reported the presence of patuletin glycosydes derivatives in the leaves of this species. Therefore, it is suggested that the compound Kb1 is glycosylated patuletin derivative. Probably the sugar (s) unit(s) are linked in the C3 in the C ring. . Regarding the development of HPLC analytical method, the system used consists of phase A: water: formic acid (99,7:0,3, v / v) and phase B: methanol: formic acid (99,7:0,3, v / v), elution gradient of 40% B - 58% B in 50 minutes, ccolumn (Hichrom ®) C18 (250x4, 0 mm, 5 μm), flow rate 0.8 mL / min, UV detection at 370 nm, temperature 25 ° C. In the analysis performed with the co-injection of thecompound Kb1 + HE of K. brasiliensis was observed that it is one of the major compounds with a retention time of 12.47 minutes and had a content of 15.3% in EH of leaves from K. brasiliensis. The method proved to be linear, precise, accurate and reproducible. According to these results, it was observed that compound Kb1 can be used as a chemical marker of EH from leaves of K. brasiliensis, to assist in quality control of drug plant and its derivatives

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraction, chemical and structural characterization of a wide variety of compounds derived from plants has been a major source of bioactive molecules. Several proteases have been isolated in the plant kingdom, with numerous pharmacological and biotechnological applications. Among the proteases isolated from plants, are the fibrinogenolytic, with relevant application in the treatment of disorders in the coagulation cascade, in addition to potential use as a tool in clinical laboratories. In this study, in addition to evaluating the effects of the protein extract of Cnidoscolus urens (L.) Arthur (Euphorbiaceae) in the coagulation cascade also investigates the presence of antimicrobial activity and characterizes the proteolytic activity detected in this extract, aiming to determine their potential pharmacological and biotechnological application. In this way, crude protein extracts obtained from the leaves of C. urens in Tris-HCl 0.05M, NaCl 0.15M, pH 7.5, were precipitated in different concentrations of acetone, and assessed for the presence of proteolytic activity in azocaseína and fibrinogen. The most active fraction (F1.0) in these tests was chosen for assessment of biological activity and biochemical characterization. The Aα chain and Bβ of fibrinogen were completely cleaved at a concentration of 0.18 μg/μL of protein fraction in 4 minutes. Fibrinogenolytic activity presented total inhibition in the presence of E-64 and partial in the presence of EDTA. The fraction demonstrated coagulant activity in plasm and reduced the APTT, demonstrating acting on the factors coagulation of the intrinsic pathway and common, not exerting effects on the PT. Fibrinolytic activity on plasma clot was detected only in SDS-PAGE in high concentrations of fraction, and there were no defibrinating. Although several proteases isolated from plants and venomous animals are classically toxic, the fraction F1.0 of C. urens not expressed hemorrhagic nor hemolytic activities. Fraction F1.0 also showed no antimicrobial activity. In proteolytic activity on the azocasein, the optimal pH was 5.0 and optimum temperature of 60ºC. The enzyme activity has been shown to be sensitive to the presence of salts tested, with inhibition for all compounds. The surfactant triton did not influence the enzyme activity, but the tween-20 and SDS inhibited the activity. In the presence of reducing agents increase in enzyme activity occurred, a typical feature of enzymes belonging to the class of cysteine proteases. Several bands with proteolytic activity were detected in zymogram, in the region of high-molecular-weight, which were inhibited by E-64. In this study, we found that C. urens presents in its constitution cysteine proteases with fibrinogenolytic and procoagulant activity, which may be isolated, with potential application in treatment of bleeding disorders, thrombolytic and clinical laboratory

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is based, at first, on the seeking of alternatives naturals reinforced in place of polymeric composites, also named reinforced plastics. Therein, this work starts with a whole licuri fiber micro structural characterization, as alternative proposal to polymeric composites. Licuri fiber is abundant on the Bahia state flora, native from a palm tree called Syagrus Coronata (Martius) Beccari. After, it was done only licuri fiber laminar composite developing studies, in order to know its behavior when impregnated with thermofix resin. The composite was developed in laminar structure shape (plate with a single layer of reinforcement) and produced industrially. The layer of reinforcement is a fabric-fiber unidirectional of licuri up in a manual loom. Their structure was made of polyester resin ortofitálica (unsaturated) only reinforced with licuri fibers. Fiber characterization studies were based on physical chemistry properties and their constitution. It was made by tension, scanning electron microscopy (SEM), x-ray diffraction (RDX) and thermal analyses (TG and DTA) tests, besides fiber chemistry analyses. Relating their mechanical properties of strength and hardness testing, they were determined through unit axial tension test and flexion in three points. A study in order to know fiber/matrix interface effects, in the final composites results, was required. To better understand the mechanical behavior of the composite, macroscopic and microscopic optical analysis of the fracture was performed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concern for the environment and the exploitation of natural resources has motivated the development of research in lignocellulosic materials, mainly from plant fibers. The major attraction of these materials include the fact that the fibers are biodegradable, they are a renewable natural resource, low cost and they usually produce less wear on equipment manufacturing when compared with synthetic fibers. Its applications are focused on the areas of technology, including automotive, aerospace, marine, civil, among others, due to the advantageous use in economic and ecological terms. Therefore, this study aims to characterize and analyze the properties of plant fiber macambira (bromelia laciniosa), which were obtained in the municipality of Ielmo Marino, in the state of Rio Grande do Norte, located in the region of the Wasteland Potiguar. The characterization of the fiber is given by SEM analysis, tensile test, TG, FTIR, chemical analysis, in addition to obtaining his title and density. The results showed that the extraction of the fibers, only 0.5% of the material is converted into fibers. The results for title and density were satisfactory when compared with other fibers of the same nature. Its structure is composed of microfibrils and its surface is roughened. The cross section has a non-uniform geometry, therefore, it is understood that its diameter is variable along the entire fiber. Values for tensile strength were lower than those of sisal fibers and curauá. The degradation temperature remained equivalent to the degradation temperatures of other vegetable fibers. In FTIR analysis showed that the heat treatment may be an alternative to making the fiber hydrophobic, since, at high temperature can remove the hemicellulose layer, responsible for moisture absorption. Its chemical constitution is endowed with elements of polar nature, so their moisture is around 8.5% which is equivalent to the percentage of moisture content of hydrophilic fibers. It can be concluded that the fiber macambira stands as an alternative materials from renewable sources and depending on the actual application and purpose, it may achieve satisfactory results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the petroleum industry, water is always present in the reservoir formation together with petroleum and natural gas and this fact provokes the production of water with petroleum, resulting in a great environmental impact. Several methods can be applied for treatment of oily waters, such as: gravitational vases, granulated media filtration systems, flotation process, centrifugation process and the use of hydrocyclones, which can also be used in a combined way. However, the flotation process has showed a great efficiency as compared with other methods, because these methods do not remove great part of the emulsified oil. In this work was investigated the use of surfactants derived from vegetable oils, OSS and OGS, as collectors, using the flotation process in a glass column with a porous plate filter in its base for the input of the gaseous steam. For this purpose, oil/water emulsions were prepared using mechanical stirring, with concentrations around 300 ppm. The air flow rate was set at 700 cm3/min and the porous plate filter used for the generation of the air bubbles has pore size varying from 16 to 40 Pm. The column operated at constant volume (1500mL). A new methodology has been developed to collect the samples, where, instead of collecting the water phase, it was collected the oil phase removed by the process in the top of the flotation column. It has been observed that it is necessary to find an optimum surfactant concentration to achieve enhanced removal efficiency. Being for OSS 1.275 mmol/L and for OGS 0.840 mmol/L, with removal efficiencies of 93% and 99%, respectively, using synthetic solutions. For the produced water, the removal in these concentrations was 75% for OSS and 65% for OGS. It is possible to remove oil from water in a flotation process using surfactants of high HLB, fact that is against the own definition of HLB (Hydrophile-Lipophile Balance). The interfacial tension is an important factor in the oil removal process using a flotation process, because it has direct interference in the coalescence of the oil drops. The spreading of the oil of the air bubble should be considered in the process, and for the optimum surfactant concentrations it reached a maximum value. The removal kinetics for the flotation process using surfactants in the optimum concentration has been adjusted according to a first order model, for synthetic water as for the produced water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, the growing environmental worry leads research the focus the application of alternative materials from renewable resources on the industrial process. The most common vegetable oil extractant using around the world is the hexane, a petroleum derived, toxic and flammable. Based on this fact, the goal of this work was to test vegetable oil extractions from sunflower seeds cultivated on the Rio Grande do Norte State using two extraction process, the mechanical expelling and solvent extraction, this one using hexane and ethanol as a alternative solvent. The solvent extractions were carried out in the Soxhlet extractor in three different extraction times (4, 6, and 8 hours). The effect of solvent and extraction time was evaluated. The mechanical extraction was carried out in a expeller and the sunflower oil obtained was characterized by its physical-chemical properties and compared with sunflower refinery oil. Furthermore this work also explored the pyrolysis reaction carried out by thermogravimetry measurement as alternative route to obtain biofuel. For this purpose the oil samples were heated to ambient temperature until 900°C in heating rate of 5, 10, 20ºC min-1 with the objective evaluated the kinetics parameters such activation energy and isoconversion. The TG/DTG curves show the thermal profile decomposition of triglycerides. The curves also showed that antioxidant presents on the refinery oil not influence on the thermal stability of sunflower oil. The total yield of the extraction s process with hexane and ethanol solvent were compared, and the results indicated that the extraction with ethanol were more efficient. The pyrolysis reaction results indicated that the use of unpurified oil required less energy to obtain the bio-oil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of oil produced water and its implications are continually under investigation and several questions are related to this subject. In the Northeast Region Brazil, the onshore reservoirs are, in its majority, mature oil fields with high production of water. As this oil produced water has high levels of oil, it cannot be directly discarded into the environment because it represents a risk for contamination of soil, water, and groundwater, or even may cause harm to living bodies. Currently, polyelectrolytes that promote the coalescence of the oil droplets are used to remove the dispersed oil phase, enhancing the effectiveness of the flotation process. The non-biodegradability and high cost of polyelectrolytes are limiting factors for its application. On this context, it is necessary to develop studies for the search of more environmentally friendly products to apply in the flotation process. In this work it is proposed the modeling of the flotation process, in a glass column, using surfactants derived from vegetal oils to replace the polyelectrolytes, as well as to obtain a model that represents the experimental data. In addition, it was made a comparative study between the models described in the literature and the one developed in this research. The obtained results showed that the developed model presented high correlation coefficients when fitting the experimental data (R2 > 0.98), thus proving its efficiency in modeling the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectinolytic enzymes, or simply pectinases, are complex enzymes that degrade pectic polymers. They have many uses, such as fruit juice extraction and purification, textile fiber treatment and vegetal oil extraction. The aim of this work was to study the kinetics of pectinases production by solid-state fermentation, using dry cashew apple residue as substrate and the microorganism Aspergillus niger CCT 0916. The influence of the initial medium moisture and medium supplementation with a source of nitrogen and phosphorus was evaluated using the factorial experimental planning and response surface methodology. Ammonia sulphate and potassium phosphate were used as nitrogen and phosphorus source, respectively. The variables time of contact (T) and ratio volume solvent/fermented medium (RZ), in systems with and without agitation, were evaluated in order to study the best extraction condition of the produced enzyme. Washed and unwashed cashew apple residues were tested as the growth medium. The unwashed residue was obtained by drying the residue after the extraction of the juice, while the washed residue was obtained by water washing 5 times using the proportion of 1 kg pulp/2 liters of water. Samples were taken every 12 hours for moisture content, pH, protein, reducing sugars, polygalacturonase activity (PG) and viscosity reduction. The physical-chemical composition of the residues had different sugar and pectin levels. For the unwashed residue, the peak activity was reached with 40% of initial moisture content, 1% of nitrogen supplementation without phosphorus addition after 30 hours of process. These conditions led to 16 U/g of PG activity and 82% of viscosity reduction. The calculated models reached similar values to the experimental ones in the same process conditions: 15.55 U/g of PG and 79.57% of viscosity eduction. Similarly, the greatest enzyme production for washed residue was reached with 40% initial moisture content, 1% nitrogen supplementation without phosphorus addition after 22 hours of cultivation. In this condition it was obtained polygalacturonase activity of 9.84 U/g and viscosity reduction of 81.36%. These values are close to experimental values that were of 10.1 U/g and 81%, respectively. The conditions that led to the best PG activity results was the agitated one and the best extraction condition was obtained with 100 minutes of solvent/medium contact and RZ of 5 (mL/g)