5 resultados para Vegetable cellulose
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Nowadays the environmental issues are increasingly highlighted since the future of humanity is dependent on the actions taken by man. Major efforts are being expended in pursuit of knowledge and alternatives to promote sustainable development without compromising the environment. In recent years there has been a marked growth in the development of reinforced composite fiber plants, as an alternative for economic and ecological effects, especially in the substitution of synthetic materials such as reinforcement material in composites. In this current study the chemical- physical or (thermophysics )characteristics of the babassu coconut fiber, derived from the epicarp of the fruit (Orbignyda Phalerata), which the main constituents of the fiber: Klason lignin, insoluble, cellulose, holocellulose, hemicellulose and the content of ash and moisture will be determined. A study was conducted about the superficial modification of the fibers of the epicarp babassu coconut under the influence of chemical treatment by alkalinization, in an aqueous solution of NaOH to 2.5% (m/v) and to 5.0% to improve the compatibility matrix / reinforcement composite with epoxy matrix. The results of the changes occurred in staple fibers through the use of the techniques of thermogravimetric analyses (TG) and differential scanning calorimetry (DSC). The results found on thermal analysis on samples of fiber without chemical treatment (alkalinities), and on fiber samples treated by alkalinization show that the proposed chemical treatment increases the thermal stability of the fibers and provides a growth of the surface of area fibers, parameters that enhance adhesion fiber / composite. The findings were evaluated and compared with published results from other vegetable fibers, showing that the use of babassu coconut fibers has technical and economic potential for its use as reinforcement in composites
Resumo:
Currently, the oil industry is the biggest cause of environmental pollution. The objective was to reduce the concentration of copper and chromium in the water produced by the oil industry. It was used as adsorbent natural sisal fiber Agave sp treated with nitric acid and sodium hydroxide. All vegetable fibers have physical and morphological properties that enablies the adsorption of pollutants. The basic composition of sisal is cellulose, hemicellulose and lignin. The features are typically found in the characterization of vegetable fibers, except the surface area that was practically zero. In the first stage of adsorption, it was evaluated the effect of temperature and time skeeking to optimize the execution of the factorial design. The results showed that the most feasible fiber was the one treated with acid in five hours (30°C). The second phase was a factorial design, using acid and five hours, this time was it determined in the first phase. The tests were conducted following the experimental design and the results were analyzed by statistical methods in order to optimize the main parameters that influence the process: pH, concentration (mol / L) and fiber mass/ metal solution volume. The volume / mass ratio factor showed significant interference in the adsorption process of chromium and copper. The results obtained after optimization showed that the highest percentages of extraction (98%) were obtained on the following operating conditions: pH: 5-6, Concentration: 100 ppm and mass/ volume: 1 gram of fiber/50mL solution. The results showed that the adsorption process was efficient to remove chromium and copper using sisal fibers, however, requiring further studies to optimize the process.
Resumo:
The present work investigated the potential of different residual lignocellulosic materials generated in rural and urban areas (coconut fibre mature, green coconut shell and mature coconut shell), and vegetable cultivated in inhospitable environments (cactus) aimed at the production of ethanol, being all materials abundant in the Northeast region of Brazil. These materials were submitted to pretreatments with alkaline hydrogen peroxide followed by sodium hydroxide (AHP-SHP), autohydrolysis (AP), hydrothermal catalyzed with sodium hydroxide (HCSHP) and alkali ethanol organosolv (AEOP). These materials pretreated were submitted to enzymatic hydrolysis and strategies of simultaneous saccharification and fermentation (SSF) and saccharification and fermentation semi-simultaneous (SSSF) by Saccharomyces cerevisiae, Zymomonas mobilis and Pichia stipitis. It was also evaluated the presence of inhibitory compounds (hydroxymethylfurfural, furfural, acetic acid, formic acid and levulinic acid) and seawater during the fermentative process. Materials pretreated with AHP-SHP have resulted in delignification of the materials in a range between 54 and 71%, containing between 51.80 and 54.91% of cellulose, between 17.65 and 28.36% of hemicellulose, between 7.99 and 10.12% of lignin. Enzymatic hydrolysis resulted in the conversions in glucose between 68 and 76%. Conversion yields in ethanol using SSF and SSSF for coconut fibre mature pretreated ranged from 0.40 and 0.43 g/g, 0.43 and 0.45 g/g, respectively. Materials pretreated by AP showed yields of solids between 42.92 and 92.74%, containing between 30.65 and 51.61% of cellulose, 21.34 and 41.28% of lignin. Enzymatic hydrolysis resulted in glucose conversions between 84.10 and 92.52%. Proceeds from conversion into ethanol using green coconut shell pretreated, in strategy SSF and SSSF, were between 0.43 and 0.45 g/g. Coconut fibre mature pretreated by HCSHP presented solids yields between 21.64 and 60.52%, with increased in cellulose between 28.40 and 131.20%, reduction of hemicellulose between 43.22 and 69.04% and reduction in lignin between 8.27 and 89.13%. Enzymatic hydrolysis resulted in the conversion in glucose of 90.72%. Ethanol yields using the SSF and SSSF were 0.43 and 0.46 g/g, respectively. Materials pretreated by AEOP showed solid reductions between 10.75 and 43.18%, cellulose increase up to 121.67%, hemicellulose reduction up to 77.09% and lignin reduced up to 78.22%. Enzymatic hydrolysis resulted in the conversion of glucose between 77.54 and 84.27%. Yields conversion into ethanol using the SSF and SSSF with cactus pretreated ranged from 0.41 and 0.44 g/g, 0.43 and 0.46 g/g, respectively. Fermentations carried out in bioreactors resulted in yields and ethanol production form 0.42 and 0.46 g/g and 7.62 and 12.42 g/L, respectively. The inhibitory compounds showed negative synergistic effects in fermentations performed by P. stipitis, Z. mobilis and S. cerevisiae. Formic acid and acetic acid showed most significant effects among the inhibitory compounds, followed by hydroxymethylfurfural, furfural and levulinic acid. Fermentations carried out in culture medium diluted with seawater showed promising results, especially for S. cerevisiae (0.50 g/g) and Z. mobilis (0.49 g/g). The different results obtained in this study indicate that lignocellulosic materials, pretreatments, fermentative processes strategies and the microorganisms studied deserve attention because they are promising and capable of being used in the context of biorefinery, aiming the ethanol production.
Resumo:
Nowadays the environmental issues are increasingly highlighted since the future of humanity is dependent on the actions taken by man. Major efforts are being expended in pursuit of knowledge and alternatives to promote sustainable development without compromising the environment. In recent years there has been a marked growth in the development of reinforced composite fiber plants, as an alternative for economic and ecological effects, especially in the substitution of synthetic materials such as reinforcement material in composites. In this current study the chemical- physical or (thermophysics )characteristics of the babassu coconut fiber, derived from the epicarp of the fruit (Orbignyda Phalerata), which the main constituents of the fiber: Klason lignin, insoluble, cellulose, holocellulose, hemicellulose and the content of ash and moisture will be determined. A study was conducted about the superficial modification of the fibers of the epicarp babassu coconut under the influence of chemical treatment by alkalinization, in an aqueous solution of NaOH to 2.5% (m/v) and to 5.0% to improve the compatibility matrix / reinforcement composite with epoxy matrix. The results of the changes occurred in staple fibers through the use of the techniques of thermogravimetric analyses (TG) and differential scanning calorimetry (DSC). The results found on thermal analysis on samples of fiber without chemical treatment (alkalinities), and on fiber samples treated by alkalinization show that the proposed chemical treatment increases the thermal stability of the fibers and provides a growth of the surface of area fibers, parameters that enhance adhesion fiber / composite. The findings were evaluated and compared with published results from other vegetable fibers, showing that the use of babassu coconut fibers has technical and economic potential for its use as reinforcement in composites
Resumo:
Currently, the oil industry is the biggest cause of environmental pollution. The objective was to reduce the concentration of copper and chromium in the water produced by the oil industry. It was used as adsorbent natural sisal fiber Agave sp treated with nitric acid and sodium hydroxide. All vegetable fibers have physical and morphological properties that enablies the adsorption of pollutants. The basic composition of sisal is cellulose, hemicellulose and lignin. The features are typically found in the characterization of vegetable fibers, except the surface area that was practically zero. In the first stage of adsorption, it was evaluated the effect of temperature and time skeeking to optimize the execution of the factorial design. The results showed that the most feasible fiber was the one treated with acid in five hours (30°C). The second phase was a factorial design, using acid and five hours, this time was it determined in the first phase. The tests were conducted following the experimental design and the results were analyzed by statistical methods in order to optimize the main parameters that influence the process: pH, concentration (mol / L) and fiber mass/ metal solution volume. The volume / mass ratio factor showed significant interference in the adsorption process of chromium and copper. The results obtained after optimization showed that the highest percentages of extraction (98%) were obtained on the following operating conditions: pH: 5-6, Concentration: 100 ppm and mass/ volume: 1 gram of fiber/50mL solution. The results showed that the adsorption process was efficient to remove chromium and copper using sisal fibers, however, requiring further studies to optimize the process.