4 resultados para Variable speed drives

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The progressing cavity pump artificial lift system, PCP, is a main lift system used in oil production industry. As this artificial lift application grows the knowledge of it s dynamics behavior, the application of automatic control and the developing of equipment selection design specialist systems are more useful. This work presents tools for dynamic analysis, control technics and a specialist system for selecting lift equipments for this artificial lift technology. The PCP artificial lift system consists of a progressing cavity pump installed downhole in the production tubing edge. The pump consists of two parts, a stator and a rotor, and is set in motion by the rotation of the rotor transmitted through a rod string installed in the tubing. The surface equipment generates and transmits the rotation to the rod string. First, is presented the developing of a complete mathematical dynamic model of PCP system. This model is simplified for use in several conditions, including steady state for sizing PCP equipments, like pump, rod string and drive head. This model is used to implement a computer simulator able to help in system analysis and to operates as a well with a controller and allows testing and developing of control algorithms. The next developing applies control technics to PCP system to optimize pumping velocity to achieve productivity and durability of downhole components. The mathematical model is linearized to apply conventional control technics including observability and controllability of the system and develop design rules for PI controller. Stability conditions are stated for operation point of the system. A fuzzy rule-based control system are developed from a PI controller using a inference machine based on Mandami operators. The fuzzy logic is applied to develop a specialist system that selects PCP equipments too. The developed technics to simulate and the linearized model was used in an actual well where a control system is installed. This control system consists of a pump intake pressure sensor, an industrial controller and a variable speed drive. The PI control was applied and fuzzy controller was applied to optimize simulated and actual well operation and the results was compared. The simulated and actual open loop response was compared to validate simulation. A case study was accomplished to validate equipment selection specialist system

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a proposal for a voltage and frequency control system for a wind power induction generator. It has been developed na experimental structure composes basically by a three phase induction machine, a three phase capacitor and a reactive static Power compensator controlled by histeresys. lt has been developed control algorithms using conventional methods (Pl control) and linguistic methods (using concepts of logic and fuzzy control), to compare their performances in the variable speed generator system. The control loop was projected using the ADJDA PCL 818 model board into a Pentium 200 MHz compu ter. The induction generator mathematical model was studied throught Park transformation. It has been realized simulations in the Pspice@ software, to verify the system characteristics in transient and steady-state situations. The real time control program was developed in C language, possibilish verify the algorithm performance in the 2,2kW didatic experimental system

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently, there are several power converter topologies applied to wind power generation. The converters allow the use of wind turbines operating at variable speed, enabling better use of wind forces. The high performance of the converters is being increasingly demanded, mainly because of the increase in the power generation capacity by wind turbines, which gave rise to various converter topologies, such as parallel or multilevel converters. The use of converters allow effective control of the power injected into the grid, either partially, for the case using partial converter, or total control for the case of using full converter. The back-to-back converter is one of the most used topologies in the market today, due to its simple structure, with few components, contributing to robust and reliable performance. In this work, is presented the implementation of a wind cogeneration system using a permanent magnet synchronous generator (PMSG) associated with a back-to-back power converter is proposed, in order to inject active power in an electric power system. The control strategy of the active power delivered to the grid by cogeneration is based on the philosophy of indirect control

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The humanity reached a time of unprecedented technological development. Science has achieved and continues to achieve technologies that allowed increasingly to understand the universe and the laws which govern it, and also try to coexist without destroying the planet we live on. One of the main challenges of the XXI century is to seek and increase new sources of clean energy, renewable and able to sustain our growth and lifestyle. It is the duty of every researcher engage and contribute in this race of energy. In this context, wind power presents itself as one of the great promises for the future of electricity generation . Despite being a bit older than other sources of renewable energy, wind power still presents a wide field for improvement. The development of new techniques for control of the generator along with the development of research laboratories specializing in wind generation are one of the key points to improve the performance, efficiency and reliability of the system. Appropriate control of back-to-back converter scheme allows wind turbines based on the doubly-fed induction generator to operate in the variable-speed mode, whose benefits include maximum power extraction, reactive power injection and mechanical stress reduction. The generator-side converter provides control of active and reactive power injected into the grid, whereas the grid-side converter provides control of the DC link voltage and bi-directional power flow. The conventional control structure uses PI controllers with feed-forward compensation of cross-coupling dq terms. This control technique is sensitive to model uncertainties and the compensation of dynamic dq terms results on a competing control strategy. Therefore, to overcome these problems, it is proposed in this thesis a robust internal model based state-feedback control structure in order to eliminate the cross-coupling terms and thereby improve the generator drive as well as its dynamic behavior during sudden changes in wind speed. It is compared the conventional control approach with the proposed control technique for DFIG wind turbine control under both steady and gust wind conditions. Moreover, it is also proposed in this thesis an wind turbine emulator, which was developed to recreate in laboratory a realistic condition and to submit the generator to several wind speed conditions.