4 resultados para Vapors.

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were performed to study the effect of surface properties of a vertical channel heated by a source of thermal radiation to induce air flow through convection. Two channels (solar chimney prototype) were built with glass plates, forming a structure of truncated pyramidal geometry. We considered two surface finishes: transparent and opaque. Each stack was mounted on a base of thermal energy absorber with a central opening for passage of air, and subjected to heating by a radiant source comprises a bank of incandescent bulbs and were performed field tests. Thermocouples were fixed on the bases and on the walls of chimneys and then connected to a data acquisition system in computer. The air flow within the chimney, the speed and temperature were measured using a hot wire anemometer. Five experiments were performed for each stack in which convective flows were recorded with values ranging from 17 m³ / h and 22 m³ / h and air flow velocities ranging from 0.38 m / s and 0.56 m / s for the laboratory tests and air velocities between 0.6 m/s and 1.1m/s and convective airflows between 650 m³/h and 1150 m³/h for the field tests. The test data were compared to those obtained by semi-empirical equations, which are valid for air flow induced into channels and simulated data from 1st Thermodynamics equation. It was found that the chimney with transparent walls induced more intense convective flows than the chimney with matte finish. Based on the results obtained can be proposed for the implementation of prototype to exhaust fumes, mists, gases, vapors, mists and dusts in industrial environments, to help promote ventilation and air renewal in built environments and for drying materials, fruits and seeds

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade, biological purification of gaseous waste has become an important alternative to many conventional methods of exhaust air treatment. More recently, biofiltration has proved to be an effective and inexpensive method for the treatment of air contaminated with volatile organic compounds (VOCs). A biofilter consists in a reactor packed with a porous solid bed material, where the microorganisms are fixed. During the biofiltration process, polluted air is transported through the biofilter medium where the contaminant is degraded. Within the biofilm, the pollutants in the waste gases are energy and carbon sources for microbial metabolism and are transformed into CO2, water and biomass. The bed material should be characterized by satisfactory mechanical and physical properties as structure, void fraction, specific area and flow resistance. The aim of this research was the biofilter construction and study of the biological degradation of ethanol and toluene, as well as the modeling of the process. Luffa cylindrica is a brazilian fiber that was used as the filtering material of the present work. The parameters and conditions studied were: composition of nutrients solution; effect of microflorae strains, namely Pseudomanas putida and Rhodococcus rhodochrous; waste gas composition; air flow rate; and inlet load of VOCs. The biofilter operated in diffusion regime and the best results for remotion capacity were obtained when a microorganisms consortion of Pseudomanas putida and Rhodococcus rhodochrous,were used, with a gas flow rate of 1 m3.h-1 and molar ratio nitrogene/phosphore N/P=2 in the nutrients solution. The maximum remotion capacity for ethanol was around 90 g.m-3.h-1 and 50 g.m-3.h-1 to toluene. It was proved that toluene has inhibitory effect on the ethanol remotion When the two VOCs were present in the same waste gas, there was a decrease of 40% in ethanol remotion capacity. Luffa cylindrica does not present considerable pressure drop. Ottengraf and van Lith models were used to represent the results obtained for ethanol and toluene, respectively. The application of the transient model indicated a satisfactory approximation between the experimental results obtained for ethanol and toluene vapors biofiltration and the ones predicted it

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc