3 resultados para VISUAL DETECTION

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a cooperative navigation systemof a humanoid robot and a wheeled robot using visual information, aiming to navigate the non-instrumented humanoid robot using information obtained from the instrumented wheeled robot. Despite the humanoid not having sensors to its navigation, it can be remotely controlled by infra-red signals. Thus, the wheeled robot can control the humanoid positioning itself behind him and, through visual information, find it and navigate it. The location of the wheeled robot is obtained merging information from odometers and from landmarks detection, using the Extended Kalman Filter. The marks are visually detected, and their features are extracted by image processing. Parameters obtained by image processing are directly used in the Extended Kalman Filter. Thus, while the wheeled robot locates and navigates the humanoid, it also simultaneously calculates its own location and maps the environment (SLAM). The navigation is done through heuristic algorithms based on errors between the actual and desired pose for each robot. The main contribution of this work was the implementation of a cooperative navigation system for two robots based on visual information, which can be extended to other robotic applications, as the ability to control robots without interfering on its hardware, or attaching communication devices

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the development of a prototype of a helicopter quadrotor for monitoring applications in oil facilities. Anomaly detection problems can be resolved through monitoringmissions performed by a suitably instrumented quadrotor, i.e. infrared thermosensors should be embedded. The proposed monitoring system aims to reduce accidents as well as to make possible the use of non-destructive techniques for detection and location of leaks caused by corrosion. To this end, the implementation of a prototype, its stabilization and a navigation strategy have been proposed. The control strategy is based on dividing the problem into two control hierarchical levels: the lower level stabilizes the angles and the altitude of the vehicle at the desired values, while the higher one provide appropriate references signals to the lower level in order the quadrotor performs the desired movements. The navigation strategy for helicopter quadrotor is made using information provided by a acquisition image system (monocular camera) embedded onto the helicopter. Considering that the low-level control has been solved, the proposed vision-based navigation technique treats the problem as high level control strategies, such as, relative position control, trajectory generation and trajectory tracking. For the position control we use a control technique for visual servoing based on image features. The trajectory generation is done in a offline step, which is a visual trajectory composed of a sequence of images. For the trajectory tracking problem is proposed a control strategy by continuous servovision, thus enabling a navigation strategy without metric maps. Simulation and experimental results are presented to validate the proposal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work uses computer vision algorithms related to features in the identification of medicine boxes for the visually impaired. The system is for people who have a disease that compromises his vision, hindering the identification of the correct medicine to be ingested. We use the camera, available in several popular devices such as computers, televisions and phones, to identify the box of the correct medicine and audio through the image, showing the poor information about the medication, such: as the dosage, indication and contraindications of the medication. We utilize a model of object detection using algorithms to identify the features in the boxes of drugs and playing the audio at the time of detection of feauteres in those boxes. Experiments carried out with 15 people show that where 93 % think that the system is useful and very helpful in identifying drugs for boxes. So, it is necessary to make use of this technology to help several people with visual impairments to take the right medicine, at the time indicated in advance by the physician