2 resultados para Upper Bounds
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this thesis, it is developed the robustness and stability analysis of a variable structure model reference adaptive controller considering the presence of disturbances and unmodeled dynamics. The controller is applied to uncertain, monovariable, linear time-invariant plants with relative degree one, and its development is based on the indirect adaptive control. In the direct approach, well known in the literature, the switching laws are designed for the controller parameters. In the indirect one, they are designed for the plant parameters and, thus, the selection of the relays upper bounds becomes more intuitive, whereas they are related to physical parameters, which present uncertainties that can be known easier, such as resistances, capacitances, inertia moments and friction coefficients. Two versions for the controller algorithm with the stability analysis are presented. The global asymptotic stability with respect to a compact set is guaranteed for both cases. Simulation results under adverse operation conditions in order to verify the theoretical results and to show the performance and robustness of the proposed controller are showed. Moreover, for practical purposes, some simplifications on the original algorithm are developed
Resumo:
In the work reported here we present theoretical and numerical results about a Risk Model with Interest Rate and Proportional Reinsurance based on the article Inequalities for the ruin probability in a controlled discrete-time risk process by Ros ario Romera and Maikol Diasparra (see [5]). Recursive and integral equations as well as upper bounds for the Ruin Probability are given considering three di erent approaches, namely, classical Lundberg inequality, Inductive approach and Martingale approach. Density estimation techniques (non-parametrics) are used to derive upper bounds for the Ruin Probability and the algorithms used in the simulation are presented