7 resultados para Unconformity
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This thesis deals with the tectonic-stratigraphic evolution of the Transitional Sequence in the Sergipe Sub-basin (the southern segment of the Sergipe-Alagoas Basin, Northeast Brazil), deposited in the time interval of the upper Alagoas/Aptian stage. Sequence boundaries and higher order internal sequences were identified, as well as the structures that affect or control its deposition. This integrated approach aimed to characterize the geodynamic setting and processes active during deposition of the Transitional Sequence, and its relations with the evolutionary tectonic stages recognized in the East Brazilian Margin basins. This subject addresses more general questions discussed in the literature, regarding the evolution from the Rift to the Drift stages, the expression and significance of the breakup unconformity, the relationships between sedimentation and tectonics at extensional settings, as well as the control on subsidence processes during this time interval. The tectonic-stratigraphic analysis of the Transitional Sequence was based on seismic sections and well logs, distributed along the Sergipe Sub-basin (SBSE). Geoseismic sections and seismic facies analysis, stratigraphic profiles and sections, were compiled through the main structural blocks of this sub-basin. These products support the depositional and tectonic-stratigraphic evolutionary models built for this sequence. The structural analysis highlighted similarities in deformation styles and kinematics during deposition of the Rift and Transitional sequences, pointing to continuing lithospheric extensional processes along a NW trend (X strain axis) until the end of deposition of the latter sequence was finished by the end of late Aptian. The late stage of extension/rifting was marked by (i) continuous (or as pulses) fault activity along the basin, controling subsidence and creation of depositional space, thereby characterizing upper crustal thinning and (ii) sagstyle deposition of the Transitional Sequence at a larger scale, reflecting the ductile stretching and thinnning of lower and sub crustal layers combined with an increasing importance of the thermal subsidence regime. Besides the late increments of rift tectonics, the Transitional Sequence is also affected by reactivation of the border faults of SBSE, during and after deposition of the Riachuelo Formation (lower section of the Transgressive Marine Sequence, of Albian age). It is possible that this reactivation reflects (through stress propagation along the newlycreated continental margin) the rifting processes still active further north, between the Alagoas Sub-basin and the Pernambuco-Paraíba Basin. The evaporitic beds of the Transitional Sequence contributed to the development of post-rift structures related to halokinesis and the continental margin collapse, affecting strata of the overlying marine sequences during the Middle Albian to the Maastrichtian, or even the Paleogene time interval. The stratigraphic analysis evidenced 5 depositional sequences of higher order, whose vertical succession indicates an upward increase of the base level, marked by deposition of continental siliciclastic systems overlain by lagunar-evaporitic and restricted marine systems, indicating that the Transitional Sequence was deposited during relative increase of the eustatic sea level. At a 2nd order cycle, the Transitional Sequence may represent the initial deposition of a Transgressive Systems Tract, whose passage to a Marine Transgressive Sequence would also be marked by the drowning of the depositional systems. At a 3rd order cycle, the sequence boundary corresponds to a local unconformity that laterally grades to a widespread correlative conformity. This boundary surface corresponds to a breakup unconformity , being equivalent to the Pre-Albian Unconformity at the SBSE and contrasting with the outstanding Pre-upper Alagoas Unconformity at the base of the Transitional Sequence; the latter is alternatively referred, in the literature, as the breakup unconformity. This Thesis supports the Pre-Albian Unconformity as marker of a major change in the (Rift-Drift) depositional and tectonic setting at SBSE, with equivalent but also diachronous boundary surfaces in other basins of the Atlantic margin. The Pre-upper Alagoas Unconformity developed due to astenosphere uplift (heating under high lithospheric extension rates) and post-dates the last major fault pulse and subsequent extensive block erosion. Later on, the number and net slip of active faults significantly decrease. At deep to ultra deep water basin segments, seaward-dipping reflectors (SDRs) are unconformably overlain by the seismic horizons correlated to the Transitional Sequence. The SDRs volcanic rocks overly (at least in part) continental crust and are tentatively ascribed to melting by adiabatic decompression of the rising astenospheric mantle. Even though being a major feature of SBSE (and possibly of other basins), the Pre-upper Alagoas Unconformity do not correspond to the end of lithospheric extension processes and beginning of seafloor spreading, as shown by the crustal-scale extensional structures that post-date the Transitional Sequence. Based on this whole context, deposition of the Transitional Sequence is better placed at a late interval of the Rift Stage, with the advance of an epicontinental sea over a crustal segment still undergoing extension. Along this segment, sedimentation was controled by a combination of thermal and mechanical subsidence. In continuation, the creation of oceanic lithosphere led to a decline in the mechanical subsidence component, extension was transferred to the mesoceanic ridge and the newly-formed continental margin (and the corresponding Marine Sequence) began to be controlled exclusively by the thermal subsidence component. Classical concepts, multidisciplinary data and new architectural and evolutionary crustal models can be reconciled and better understood under these lines
Resumo:
This thesis deals with the sedimentological/stratigraphic and structural evolution of the sedimentary rocks that occur in the NW continental border of the Potiguar Basin. These rocks are well exposed along coastal cliffs between the localities of Lagoa do Mato and Icapuí, Ceará State (NE Brazil). The sedimentological/stratigraphic study involved, at the outcrop scale, detailed facies descriptions, profile mapping of the vertical succession of different beds, and columnar sections displaying inferred lateral relationships. The approach was complemented by granulometric and petrographic analyses, including the characterization of heavy mineral assemblages. The data set allowed to recognize two kinds of lithological units, a carbonate one of very restricted occurrence at the base of the cliffs, and three younger, distinct siliciclastic units, that predominate along the cliffs, in vertical and lateral extent. The carbonate rocks were correlated to the late Cretaceous Jandaíra Formation, which is covered by the siliciclastic Barreiras Formation. The Barreiras Formation occurs in two distinct structural settings, the usual one with nondeformed, subhorizontal strata, or as tilted beds, affected by strong deformation. Two lithofacies were recognized, vertically arranged or in fault contacts. The lower facies is characterized by silty-argillaceous sandstones with low-angle cross bedding; the upper facies comprises medium to coarse grained sandstones, with conglomeratic layers. The Tibau Formation (medium to coarse-grained sandstones with argillite intercalations) occurs at the NW side of the studied area, laterally interlayered with the Barreiras Formation. Eolic sediments correlated to the Potengi Formation overly the former units, either displaying an angular unconformity, or simply an erosional contact (stratigraphic unconformity). Outstanding structural features, identified in the Barreiras Formation, led to characterize a neocenozoic stress field, which generated faults and folds and/or reactivated older structures in the subjacent late cretaceous (to paleogene, in the offshore basin) section. The structures recognized in the Barreiras Formation comprise two distinct assemblages, namely a main extensional deformation between the localities of Ponta Grossa and Redonda, and a contractional style (succeeded by oblique extensional structures) at Vila Nova. In the first case, the structural assemblage is dominated by N-S (N±20°Az) steep to gently-dipping extensional faults, displaying a domino-style or listric geometry with associated roll-over structures. This deformation pattern is explained by an E-W/WNW extension, contemporaneous with deposition of the upper facies of the Barreiras Formation, during the time interval Miocene to Pleistocene. Strong rotation of blocks and faults generated low-angle distensional faults and, locally, subvertical bedding, allowing to estimate very high strain states, with extension estimates varying between 40% up to 200%. Numerous detachment zones, parallel to bedding, help to acommodate this intense deformation. The detachment surfaces and a large number of faults display mesoscopic features analoguous to the ones of ductile shear zones, with development of S-C fabrics, shear bands, sigmoidal clasts and others, pointing to a hydroplastic deformation regime in these cases. Local occurrences of the Jandaíra limestone are controled by extensional faults that exhume the pre-Barreiras section, including an earlier event with N-S extension. Finally, WNWtrending extensional shear zones and faults are compatible with the Holocene stress field along the present continental margin. In the Vila Nova region, close to Icapuí, gentle normal folds with fold hinges shallowly pluging to SSW affect the lower facies of the Barreiras Formation, displaying an incipient dissolution cleavage associated with an extension lineation at high rake (a S>L fabric). Deposition of the upper facies siliciclastics is controlled by pull-apart graben structures, bordered by N-NE-trending sinistral-normal shear zones and faults, characterizing an structural inversion. Microstructures are compatible with tectonic deformation of the sedimentary pile, burried at shallow depths. The observed features point to high pore fluid pressures during deformation of the sediments, producing hydroplastic structures through mechanisms of granular flow. Such structures are overprinted by microfractures and microfaults (an essentially brittle regime), tracking the change to microfracturing and frictional shear mechanisms accompanying progressive dewatering and sediment lithification. Correlation of the structures observed at the surface with those present at depth was tested through geophysical data (Ground Penetrating Radar, seismics and a magnetic map). EW and NE-trending lineaments are observed in the magnetic map. The seismic sections display several examples of positive flower structures which affect the base of the cretaceous sediments; at higher stratigraphic levels, normal components/slips are compatible with the negative structural inversion characterized at the surface. Such correlations assisted in proposing a structural model compatible with the regional tectonic framework. The strong neogenepleistocene deformation is necessarily propagated in the subsurface, affecting the late cretaceous section (Açu and Jandaíra formations), wich host the hydrocarbon reservoirs in this portion of the Potiguar Basin. The proposed structural model is related to the dextral transcurrent/transform deformation along the Equatorial Margin, associated with transpressive terminations of E-W fault zones, or at their intersections with NE-trending lineaments, such as the Ponta Grossa-Fazenda Belém one (the LPGFB, itself controlled by a Brasiliano-age strike-slip shear zone). In a first step (and possibly during the late Cretaceous to Paleogene), this lineament was activated under a sinistral transpressional regime (antithetic to the main dextral deformation in the E-W zones), giving way to the folds in the lower facies of the Barreiras Formation, as well as the positive flower structures mapped through the seismic sections, at depth. This stage was succeeded (or was penecontemporaneous) by the extensional structures related to a (also sinistral) transtensional movement stage, associated to volcanism (Macau, Messejana) and thermal doming processes during the Neogene-Pleistocene time interval. This structural model has direct implications to hydrocarbon exploration and exploitation activities at this sector of the Potiguar Basin and its offshore continuation. The structure of the reservoirs at depth (Açu Formation sandstones of the post-rift section) may be controlled (or at least, strongly influenced) by the deformation geometry and kinematics characterized at the surface. In addition, the deformation event recognized in the Barreiras Formation has an age close to the one postulated for the oil maturation and migration in the basin, between the Oligocene to the Miocene. In this way, the described structural cenario represents a valid model to understand the conditions of hydrocarbon transport and acummulation through space openings, trap formation and destruction. This model is potentially applicable to the NW region of the Potiguar Basin and other sectors with a similar structural setting, along the brazilian Equatorial Atlantic Margin
Resumo:
A complex depositional history, related to Atlantic rifting, demonstrates the geological evolution during the late Jurassic and early Neocomian periods in the Araripe Basin NE Brazil. Based on outcrop, seismic and remote sensing data, a new model of the tectono-stratigraphic evolution of the section that covers the stages Dom João, Rio da Serra and Aratu (Brejo Santo, Missão Velha and Abaiara formations) is presented in this paper. In the stratigraphic section studied, ten sedimentary facies genetically linked to nine architectural elements were described, representing depositional systems associated with fluvial, aeolian and deltaic environments. Based on the relationship between the rates of creation of accommodation space and sediment influx (A / S) it was possible to associate these depositional systems with High and Low accommodation system tracks. These system tracks represent two tectono-sequences, separated by regional unconformities. The Tectono-sequence I, which includes lithotypes from the Brejo Santo Formation and is related to the pre-rift stage, is bounded at the base by the Paleozoic unconformity. This unit represents only a High Accommodation System Track, composed by a succession of pelitic levels interbedded with sandstones and limestones, from a large fluvial floodplain origin, developed under arid climatic conditions. The Tectono-sequence II, separated from the underlying unit by an erosional unconformity, is related to the rift stage, and is composed by the Missão Velha and Abaiara Formation lithotypes. Changes in depositional style that reflect variations in the A / S ratio, and the presence of hydroplastic deformation bands, make it possible to divide this tectonosequence into two internal sequences. Sequence IIA, which includes the lower portion of the Missão Velha Formation and sequence IIB, is composed by the upper section of the Missão Velha and Abaiara Formations The Sequence IIA below, composed only by the Low Accommodation System Track, includes crossbedding sandstones interbedded with massive mudstones, which are interpreted as deposits of sandy gravel beds wandering rivers. Sequence IIB, above, is more complex, showing a basal Low Accommodation System Track and a High Accommodation System Track at the top, separated by an expansion surface. The lower System Track, related to the upper portion of the Missão Velha Formation, is composed by a series of amalgamated channels, separated by erosion surfaces, interpreted as deposits of a belt of braided channels. The High Accommodation System Track, correlated with the Abaiara Unit, is marked by a significant increase in the A / S, resulting in the progradation of a system of braided river deltas with aeolic influence. Regarding tectonic evolution, the stratigraphic study indicates that the Tectonosequence Rift in the Araripe basin was developed in two phases: first characterized by a beginning of rifting, related to Sequence IIA, followed by a phase of syndepositional deformation, represented by sequence IIB. The first phase was not influenced by the development of large faults, but was influenced by a sharp and continuous decrease of accommodation space that permitted a change in depositional patterns, establishing a new depositional architecture. In turn, the stage of syndepositional deformation allowed for the generation of enough accommodation space for the preservation of fluvial-lacustrine deposits and conditioned the progradation of a braided river-dominated delta system.
Resumo:
The Palestina Graben is one of the NE-trending asymmetric grabens of the Araripe Basin. This basin rests on the precambrian terrains of the Transversal Zone, Borborema Province, immediately to the south of the Patos Lineament. It is part of the Interior Basins province of Northeastern Brazil, being related to the fragmentation of the Gondwana supercontinent and the opening of the South Atlantic ocean. The Palestina Graben trends NE-SW and presents an asymmetric geometry, controled by the NW extensional eocretaceous strain. The graben borders display distinct geometries. The SE border is a flexural margin, characterized by the non conformity of the eopaleozoic Mauriti Formation (the oldest unit of the basin) overlying the crystalline basement, but also affected by normal faults with small displacements. On the opposite, the NW border is continuous and rectilinear, being marked by normal faults with major displacements, that control the general tilting of the layers to the NW. In this sense, the Mauriti Formation is overlain by the Brejo Santo, Missão Velha (which also occurs in the Brejo Santo-Mauriti horst, to the NW of the fault border) and Abaiara formations, the latter restricted to the graben. The interpretation of available gravity data and a seismic line indicates that the main fault has a variable dip slip component, defining two deeper portions within the graben, in which the sedimentary column can reach thicknesses of up to 2 km. Regarding to the stratigraphy of Araripe Basin in the study area, the sedimentary package includes three distinct tectonosequences. The Paleozoic Syneclisis Tectonosequence is composed by the Mauriti Formation, deposited by a braided fluvial system. The Jurassic Tectonosequence, whose tectonic setting is still debatable (initial stage of the Neocomian rift, or a pre-rift syneclisis ?), is represented by the Brejo Santo Formation, originated in a distal floodplain related to ephemeral drainages. The Rift Tectonosequence, of neocomian age, includes the Missão Velha Formation, whose lower section is related to a braided to meandering fluvial system, outlining the Rift Initiation Tectonic Systems Tract. The upper section of the Missão Velha Formation is separated from the latter by a major unconformity. This interval was originated by a braided fluvial system, overlain by the Abaiara Formation, a deltaic system fed by a meandering fluvial system. Both sections correspond to the Rift Climax Tectonic Systems Tract. In the area, NE-trending normal to oblique faults are associated with NW transfer faults, while ENE to E-W faults display dominant strike slip kinematics. Both NE and E-W fault sets exhibit clear heritage from the basement structures (in particular, shear zones), which must have been reactivated during the eocretaceous rifting. Faults with EW trends display a dominant sinistral shear sense, commonly found along reactivated segments of the Patos Lineament and satellyte structures. Usually subordinate, dextral directional movements, occur in faults striking NNW to NE. Within this framework bearing to the Palestina Graben, classical models with orthogonal extension or pull-apart style deserve some caution in their application. The Palestina Graben is not limited, in its extremeties, by E-W transcurrent zones (as it should be in the case of the pull-apart geometry), suggesting a model close to the classic style of orthogonal opening. At the same time, others, adjacent depocenters (like the Abaiara-Jenipapeiro semi-graben) display a transtensional style. The control by the basement structures explains such differences
Resumo:
Subsurface stratigraphic analysis of Devonian strata from the Rio do Peixe Basin, newly recognized by palynological studies, has resulted in the identification of two new lithostratigraphic units assembled in the Santa Helena Group. The Pilões Formation, the lower unit, is composed mainly of dark mudstones and medium-tovery fine-grained sandstones, with minor conglomerates and breccias. The Triunfo Formation, the upper unit, comprises whitish grey, kaolinitic, coarse-grained to conglomeratic, cross stratified sandstones and conglomerates, with interbedded mudstones and fine-grained sandstones. These units were characterized using cores, sidewall and cuttings samples, conventional logs and image log, from three wells drilled by PETROBRAS, and 3D seismic data. The Pilões Formation is interpreted as prodeltaic facies, with lesser associated subaqueous talus, debrite and sandy turbidite lobe facies, distal part of fandelta and braided fluviodeltaic facies of Triunfo Formation. The Santa Helena Group corresponds to the Lower Devonian tectono-sequence deposited in a NW-SE-trending graben during a transgressiveregressive cycle. With 343 meters of thickness (isochore) in well 1-PIL-1-PB (Pilões 1), this sequence has a non-conformity at the lower boundary and its upper boundary is an unconformity with the Lower Cretaceous tectono-sequence (Rio do Peixe Group), that represents a hiatus of about 265 million years. Ignimbrites and coignimbrite breccias (Poço da Jurema volcanic breccia), related to an unknown pyroclastic volcanic event, were recognized at the northern margin of the Sousa halfgraben. Evidence from well data suggests that this event is coeval with the Devonian graben filling. The present study indicates a polyhistorical tectono-volcanosedimentary evolution of the basin. This lithostratigraphic update brings new perspectives for geological research in the Rio do Peixe Basin, as well as in other inland basins of the Northeastern of Brazil. The results of the research also contribute to the kwnoledge of the Borborema Province and western Gondwana paleogeography during the Early Devonian.
Resumo:
The Middle Devonian-Early Carboniferous sequence of the Parnaíba Basin, lithostratigraphically defined as Canindé Group, has been reinterpreted using the basic model of sequence stratigraphy. Therefore, lithology and gamma ray well-logs and seismic lines of central portion of the basin were analyzed, producing up from there diagrams 1D, isochore maps and stratigraphic sections. As results of this study, were defined two depositional cycles of second order, referred as Depositional Sequence 1 (SEQ1) and the Depositional Sequence 2 (SEQ2). The SEQ1, with interval about 37 Ma, is limited below by Early Devonian Unconformity and is equivalent to the formations Itaim, Pimenteiras and Cabeças. The SEQ2, which follows, comprises a range of about 15 Ma and is equivalent to the Longá Formation The SEQ1 starts with the lowstand systems tract, consisting of progradational parasequence set in the basal part, predominantly pelitic, deposited on a prodelta under influence of storms and the upper part consists in sandstones of deltaic front, with the maximum regressive surface on the upper limit. The transgressive systems tract, deposited above, is characterized by retrogradacional parasequence set composed of shallow shelf mudstones, deposited under storm conditions. The maximum flooding surface, upper limit of this tract, is positioned in a shale level whose radioactivity in gammaray well-log is close to 150 API. The highstand systems tract presents progradational parasequence set, comprising mudstones and sandstones deposited in shelf, fluvial-estuarine or deltaic and periglacial environments, with the upper limit the Late Devonian Unconformity. The SEQ2 was deposited in shelf environment, starting with the lowstand systems tract, that is characterized by a progradational parasequence set, followed by the transgressive systems tract, with retrogradational character. The upper limit of the tract corresponding to the fusion between maximum flooding surface with the upper limit of this sequence, which is the Early Carboniferous Unconformity, where the overlapping section was eroded. This section, which corresponds the highstand systems tract is restricted to portions at which the erosion that generate the Early-Carboniferous Unconformity was less effective, preserving the records of this unit.
Resumo:
The Middle Devonian-Early Carboniferous sequence of the Parnaíba Basin, lithostratigraphically defined as Canindé Group, has been reinterpreted using the basic model of sequence stratigraphy. Therefore, lithology and gamma ray well-logs and seismic lines of central portion of the basin were analyzed, producing up from there diagrams 1D, isochore maps and stratigraphic sections. As results of this study, were defined two depositional cycles of second order, referred as Depositional Sequence 1 (SEQ1) and the Depositional Sequence 2 (SEQ2). The SEQ1, with interval about 37 Ma, is limited below by Early Devonian Unconformity and is equivalent to the formations Itaim, Pimenteiras and Cabeças. The SEQ2, which follows, comprises a range of about 15 Ma and is equivalent to the Longá Formation The SEQ1 starts with the lowstand systems tract, consisting of progradational parasequence set in the basal part, predominantly pelitic, deposited on a prodelta under influence of storms and the upper part consists in sandstones of deltaic front, with the maximum regressive surface on the upper limit. The transgressive systems tract, deposited above, is characterized by retrogradacional parasequence set composed of shallow shelf mudstones, deposited under storm conditions. The maximum flooding surface, upper limit of this tract, is positioned in a shale level whose radioactivity in gammaray well-log is close to 150 API. The highstand systems tract presents progradational parasequence set, comprising mudstones and sandstones deposited in shelf, fluvial-estuarine or deltaic and periglacial environments, with the upper limit the Late Devonian Unconformity. The SEQ2 was deposited in shelf environment, starting with the lowstand systems tract, that is characterized by a progradational parasequence set, followed by the transgressive systems tract, with retrogradational character. The upper limit of the tract corresponding to the fusion between maximum flooding surface with the upper limit of this sequence, which is the Early Carboniferous Unconformity, where the overlapping section was eroded. This section, which corresponds the highstand systems tract is restricted to portions at which the erosion that generate the Early-Carboniferous Unconformity was less effective, preserving the records of this unit.