9 resultados para Umbilical, cordon
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Mesenchymal stem cells (MSCs) are known as a population of multi-potential cells able to proliferate and differentiate into multiple mesodermal tissues including bone, cartilage, muscle, ligament, tendon, fat and stroma. Several applications of the study of EC can be emphasized the therapeutic techniques such as guided bone regeneration by implantation of EC in the affected site, without the need for bone grafts, using titanium as a vehicle. The process of cryopreservation is essential for the maintenance of cell cultures, since the cell line is frozen, it can be maintained in liquid nitrogen for an indefinite period and then thawed for therapeutic or experimental purposes. The aim of this study was to isolate a population of MSCs derived from the subendothelium of the umbilical vein human (MSCs-SUVH) to assess cytogenetic analysis by the possibility of appearance of chromosomal changes in two different situations: MSCs-SUVH regarding the process of cryopreservation and MSCs-SUVH grown on the surface of titanium. Flow cytometry analysis revealed that, this cell population was positive for the markers CD29, CD73 and CD90, but there was no expression of hematopoietic lineage markers, such as CD14, CD34 and CD45 and demonstrated capacity for osteogenic differentiation. The chromosomes obtained from the primary culture of MSCs-SUVH were analyzed by GTW banding technique, and results are described as guidelines to ISCN 2005. There was not the emergence of clonal chromosomal changes in the MSCs-SUVH in different situations analyzed. However one of the strings presented a balanced paracentric inversion, probably a cytogenetic constitutional alterations, which was present before and after the experimental situations that the MSCs-SUVH was submitted
Resumo:
Human multipotent mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have become an important and attractive therapeutic tool since they are easily isolated and cultured, have in vitro expansion potential, substantial plasticity and secrete bioactive molecules that exert trophic effects. The human umbilical cord as a cell source for cell therapy will help to avoid several ethical, political, religious and technical issues. One of the main issues with SC lines from different sources, mainly those of embryonic origin, is the possibility of chromosomal alterations and genomic instability during in vitro expansion. Cells isolated from one umbilical cord exhibited a rare balanced paracentric inversion, likely a cytogenetic constitutional alteration, karyotype: 46,XY,inv(3)(p13p25~26). Important genes related to cancer predisposition and others involved in DNA repair are located in 3p25~26. Titanium is an excellent biomaterial for bone-implant integration; however, the use can result in the generation of particulate debris that can accumulate in the tissues adjacent to the prosthesis, in the local bone marrow, in the lymph nodes, liver and spleen. Subsequently may elicit important biological responses that aren´t well studied. In this work, we have studied the genetic stability of MSC isolated from the umbilical cord vein during in vitro expansion, after the cryopreservation, and under different concentrations and time of exposition to titanium microparticles. Cells were isolated, in vitro expanded, demonstrated capacity for osteogenic, adipogenic and chondrogenic differentiation and were evaluated using flow cytometry, so they met the minimum requirements for characterization as MSCs. The cells were expanded under different concentrations and time of exposition to titanium microparticles. The genetic stability of MSCs was assessed by cytogenetic analysis, fluorescence in situ hybridization (FISH) and analysis of micronucleus and other nuclear alterations (CBMN). The cells were able to internalize the titanium microparticles, but MSCs preserve their morphology, differentiation capacity and surface marker expression profiles. Furthermore, there was an increase in the genomic instability after long time of in vitro expansion, and this instability was greater when cells were exposed to high doses of titanium microparticles that induced oxidative stress. It is necessary always assess the risks/ benefits of using titanium in tissue therapy involving MSCs, considering the biosafety of the use of bone regeneration using titanium and MSCs. Even without using titanium, it is important that the therapeutic use of such cells is based on analyzes that ensure quality, security and cellular stability, with the standardization of quality control programs appropriate. In conclusion, it is suggested that cytogenetic analysis, FISH analysis and the micronucleus and other nuclear alterations are carried out in CTMH before implanting in a patient
Resumo:
Human mesenchymal stem cells (MSC) are powerful sources for cell therapy in regenerative medicine. The long time cultivation can result in replicative senescence or can be related to the emergence of chromosomal alterations responsible for the acquisition of tumorigenesis features in vitro. In this study, for the first time, the expression profile of MSC with a paracentric chromosomal inversion (MSC/inv) was compared to normal karyotype (MSC/n) in early and late passages. Furthermore, we compared the transcriptome of each MSC in early passages with late passages. MSC used in this study were obtained from the umbilical vein of three donors, two MSC/n and one MSC/inv. After their cryopreservation, they have been expanded in vitro until reached senescence. Total RNA was extracted using the RNeasy mini kit (Qiagen) and marked with the GeneChip ® 3 IVT Express Kit (Affymetrix Inc.). Subsequently, the fragmented aRNA was hybridized on the microarranjo Affymetrix Human Genome U133 Plus 2.0 arrays (Affymetrix Inc.). The statistical analysis of differential gene expression was performed between groups MSC by the Partek Genomic Suite software, version 6.4 (Partek Inc.). Was considered statistically significant differences in expression to p-value Bonferroni correction ˂.01. Only signals with fold change ˃ 3.0 were included in the list of differentially expressed. Differences in gene expression data obtained from microarrays were confirmed by Real Time RT-PCR. For the interpretation of biological expression data were used: IPA (Ingenuity Systems) for analysis enrichment functions, the STRING 9.0 for construction of network interactions; Cytoscape 2.8 to the network visualization and analysis bottlenecks with the aid of the GraphPad Prism 5.0 software. BiNGO Cytoscape pluggin was used to access overrepresentation of Gene Ontology categories in Biological Networks. The comparison between senescent and young at each group of MSC has shown that there is a difference in the expression parttern, being higher in the senescent MSC/inv group. The results also showed difference in expression profiles between the MSC/inv versus MSC/n, being greater when they are senescent. New networks were identified for genes related to the response of two of MSC over cultivation time. Were also identified genes that can coordinate functional categories over represented at networks, such as CXCL12, SFRP1, xvi EGF, SPP1, MMP1 e THBS1. The biological interpretation of these data suggests that the population of MSC/inv has different constitutional characteristics, related to their potential for differentiation, proliferation and response to stimuli, responsible for a distinct process of replicative senescence in MSC/inv compared to MSC/n. The genes identified in this study are candidates for biomarkers of cellular senescence in MSC, but their functional relevance in this process should be evaluated in additional in vitro and/or in vivo assays
Resumo:
As mucopolissacaridoses (MPS) são doenças genéticas raras decorrente da deficiência de enzimas lisossomais envolvidas no catabolismo de glicosaminoglicanos, resultando em um amplo espectro de manifestações clínicas, progressivas e multissistêmicas, exigindo tratamento por uma equipe multidisciplinar. Embora o Nordeste brasileiro seja uma região com grande taxa de consangüinidade e um efeito fundador envolvendo MPS, não há estudos caracterizando os pacientes dessa região. Nosso objetivo foi determinar o perfil epidemiológico, clínico e genético de casos não publicados com MPS provenientes do Ceará, identificando as diferenças entre outros estudos com MPS e possíveis problemas a serem enfrentados para a realização do diagnóstico precoce. O estudo foi seccional, descritivo, com amostra de pacientes com MPS em acompanhamento no Hospital Infantil Albert Sabin e Hospital Geral Cesar Cals no período de 2006-2013. Os dados foram obtidos a partir da avaliação clínica, revisão de prontuários médicos e entrevista com os pacientes e/ou familiares realizadas pelo investigador principal. Cinquenta e três pacientes foram incluídos no estudo (36 do sexo masculino), sendo 6 MPS I, 17 MPS II, 7 MPS III (3 MPSIII-A, 3 MPS III-B, 1 MPS III-C), 7 MPS IV-A, 16 de MPS VI. O óbito ocorreu em 16 casos (3 MPS I, MPS II 6, 1 MPS IIIA , IIIB 1MPS , 1 MPS IV , 4 MPS VI). A amostra foi composta principalmente por crianças. Houve elevada taxa de consangüinidade e recorrência familiar. Os tipos mais comuns foram MPS II e MPS VI. Exceto para macrossomia em MPS II, os dados de nascimento indicam que não houve risco para desenvolvimento de viii complicações perinatais. Os sintomas iniciaram em crianças com menos de 2 anos. As manifestações clínicas foram heterogêneas exceto para atraso no desenvolvimento neurológico em MPS III e manifestações esqueléticas em MPS IV. As principais características clínicas foram macrocefalia, baixa estatura, alterações odontológicas, respiratórias, cardíacas, hepatoesplenomegalia, hérnia umbilical, rigidez articular e anormalidades esqueléticas. A terapia de reposição enzimática foi instituída em 26 casos (4 MPS I, 10 MPS II, 12 MPS VI). Os problemas sócio-econômicos das famílias, o amplo espectro de sintomas e a gravidade da doença foram causas das dificuldades em realizar a avaliação periódica pela equipe multidisciplinar, além de exames complementares de maior custo para determinar as complicações da doença. Este foi o maior estudo transversal sobre MPS no Nordeste do Brasil. Em contraste com a maior incidência de MPS I na maioria das populações ocidentais, houve maior incidência de MPS II e VI. As alterações respiratórias foram um dos principais contribuintes para a mortalidade precoce, exceto nos casos de MPS I, em que a cardiomiopatia foi prevalente. A menor expectativa de vida ocorreu em MPS I. O envolvimento cognitivo foi comum em casos graves e o maior número de órgãos envolvidos representou maior risco de morrer. Para o diagnóstico precoce, deve-se buscar indivíduos afetados em famílias em que há parentes com MPS, além do maior reconhecimento de sinais e sintomas de MPS por profissionais de saúde
Resumo:
A possibilidade de repor células perdidas em doenças neurodegenerativas através de transplantes com células-troncos das mais diversas fontes vem sendo amplamente estudada. As células-tronco adultas (CTA) podem ser facilmente isoladas e sua utilização na pesquisa não envolve questões éticas e religiosas. Além disso, estas células são menos propícias à transformação tumoral do que células-tronco embrionárias, outra importante fonte de células para terapias celulares. No entanto, as CTA são, em estados fisiológicos, restritas a geração de células dos seus tecidos de origem, o que poderia limitar a sua utilização. Porém, nos últimos anos, uma série de técnicas vem sendo descritas com o objetivo de reverter tais limitações. Neste trabalho, nós investigamos a capacidade das células-tronco mesenquimais adultas, isoladas de camundongos ou do cordão umbilical humano, serem induzidas a adquirir um fenótipo neuronal de forma direta, sem passar por um estágio de célula progenitora ou pluripotente, através da reprogramação genética com genes pró-neurais. Nossos resultados indicam que tanto células-tronco mesenquimais adultas murinas quanto humanas podem ser reprogramadas em neurônios após a expressão combinada de Sox2 e Ascl1 ou Sox2 e Neurog2. As células reprogramadas exibem morfologias compatíveis com o fenótipo neuronal, expressam proteínas típicas de neurônios maduros, apresentam a capacidade de gerar potenciais de ação repetitivos e formam conexões sinápticas com outros neurônios presentes no cultivo. Portanto, nosso trabalho apresenta a primeira evidência de reprogramação direta de células-tronco mesenquimais humanas em neurônios funcionais.
Resumo:
Vitamin A is an essential nutrient for many physiological processes such as growth and development, so that their adequate nutritional state is essential during pregnancy and lactation. Lactating women and children in breastfeeding are considered risk groups for vitamin A deficiency and some factors may increase the risk of vitamin A deficiency, such as prematurity. The aim of this work was to evaluate the vitamin A concentration in preterm and term lactating women and newborns by determination of retinol in maternal serum, umbilical cord serum and breast milk collected until 72 hours postpartum. 182 mothers were recruited and divided into preterm group (GPT; n = 118) and term group (GT, n = 64). In preterm group were also analyzed transition milk (7th-15th day; n = 68) and mature milk (30th-55th day; n = 46) samples. Retinol was analyzed by high-performance liquid chromatography (HPLC). Maternal retinol concentration in serum was 48.6 ± 12.3 µg/dL in GPT and 42.8 ± 16.3 µg/dL in the GT (p <0.01). Cord serum retinol was 20.4 ± 7.4 µg/dL in GPT and 23.2 ± 7.6 µg/dL in GT (p> 0.05). Among newborns, 43% of premature and 36% of term had low levels of serum retinol in umbilical cord (<20 µg/dL). In colostrum, the retinol in preterm and term groups had an average of 100.8 ± 49.0 µg/dL and 127.5 ± 65.1 µg/dL, respectively (p <0.05). The retinol average in preterm milk increased to 112.5 ± 49.7 µg/dL in transition phase and decreased to 57.2 ± 23.4 µg/dL in mature milk, differing significantly in all stages (p <0.05). When comparing with the recommendation of vitamin A intake (400 µg/day) GT colostrum reached the recommendation for infants, but in GPT the recommendation was not achieved at any stage. Mothers of premature infants had higher serum retinol than mothers at term; however, this was not reflected in serum retinol of umbilical cord, since premature had lower concentration of retinol. Such condition can be explained due to lower maternal physiological hemodilution and placental transfer of retinol to the fetus during preterm gestation. Comparison of retinol in colostrum showed lower concentrations in GPT; however the transition phase there was a significant increase of retinol content released by the mammary gland of preterm mothers. This situation highlights a specific physiological adaptation of prematurity, likely to more contribute to formation of hepatic reserves of retinol in premature infants.
Resumo:
Aim : To evaluate and to standardize surface electromyography (sEMG) normalization procedures for respiratory muscles by comparing muscle activation during Maximal Voluntary Isometric Contraction (MVIC) and Maximal Respiratory Pressures (MIP, MEP and sniff test). Methods: Healthy subjects were evalua ted regarding demographics, spirometry and sEMG during the five maneuvers: sniff test, MIP , MEP and Maximal Voluntary Isometric C ontraction (MVIC) of RA, SCM and SC A . For electrode placement, skin was prepared with abrasion, followed by shaving in the foll owing regions for acquisition of el ectromyographic signals: (1) SC M: lower third of the distance between the mastoid process and t he sternoclavicular joint; (2) SC A : 5 cm to the right from the sternoclavicular joint and at this point, up to 2 cm; and (3 ) RA: the level of umbilicus, 4 cm to the right. In electromyographic variables analysis , the data normality was assessed by Shapiro - Wilk test. Comparisons among studied maneuvers were performed by Friedman Test and Dunn’s post - hoc for multiple comparisons a mong inspiratory maneuvers, and Mann Whitney test for expiratory maneuvers. Subgroups differences between genders were performed by Student's t test or Mann - Whitney test according to data normality. Results: 35 subjects participated in the study, b ut 5 we re excluded (BMI> 25 kg/ m²). Sample consisted of 30 subjects (1 5 women), mean age 27.3±7.43 years, BMI 22.2 ± 1.69 kg/m² and spirometric indices within normal limits. Specific MVIC for SCM, SCA and RA showed the highest RMS. When we grouped sample into gender we found no difference among RMS values for the studied SCM maneuvers, while for SCA, MVIC SCM / SCA was the one with the highest RMS and for RA, MVIC RA in men. Once considering women, MVIC SCM/SCA showed the highest RMS for SCM, SCA and MVIC RA showed t he highest value for RA. Conclusion: MVIC for SCM, SCA and RA muscles showed the highest RMS values. When comparing RMS between the studied groups, there was no significant difference between men and women.
Resumo:
Human multipotent mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have become an important and attractive therapeutic tool since they are easily isolated and cultured, have in vitro expansion potential, substantial plasticity and secrete bioactive molecules that exert trophic effects. The human umbilical cord as a cell source for cell therapy will help to avoid several ethical, political, religious and technical issues. One of the main issues with SC lines from different sources, mainly those of embryonic origin, is the possibility of chromosomal alterations and genomic instability during in vitro expansion. Cells isolated from one umbilical cord exhibited a rare balanced paracentric inversion, likely a cytogenetic constitutional alteration, karyotype: 46,XY,inv(3)(p13p25~26). Important genes related to cancer predisposition and others involved in DNA repair are located in 3p25~26. Titanium is an excellent biomaterial for bone-implant integration; however, the use can result in the generation of particulate debris that can accumulate in the tissues adjacent to the prosthesis, in the local bone marrow, in the lymph nodes, liver and spleen. Subsequently may elicit important biological responses that aren´t well studied. In this work, we have studied the genetic stability of MSC isolated from the umbilical cord vein during in vitro expansion, after the cryopreservation, and under different concentrations and time of exposition to titanium microparticles. Cells were isolated, in vitro expanded, demonstrated capacity for osteogenic, adipogenic and chondrogenic differentiation and were evaluated using flow cytometry, so they met the minimum requirements for characterization as MSCs. The cells were expanded under different concentrations and time of exposition to titanium microparticles. The genetic stability of MSCs was assessed by cytogenetic analysis, fluorescence in situ hybridization (FISH) and analysis of micronucleus and other nuclear alterations (CBMN). The cells were able to internalize the titanium microparticles, but MSCs preserve their morphology, differentiation capacity and surface marker expression profiles. Furthermore, there was an increase in the genomic instability after long time of in vitro expansion, and this instability was greater when cells were exposed to high doses of titanium microparticles that induced oxidative stress. It is necessary always assess the risks/ benefits of using titanium in tissue therapy involving MSCs, considering the biosafety of the use of bone regeneration using titanium and MSCs. Even without using titanium, it is important that the therapeutic use of such cells is based on analyzes that ensure quality, security and cellular stability, with the standardization of quality control programs appropriate. In conclusion, it is suggested that cytogenetic analysis, FISH analysis and the micronucleus and other nuclear alterations are carried out in CTMH before implanting in a patient
Resumo:
Human mesenchymal stem cells (MSC) are powerful sources for cell therapy in regenerative medicine. The long time cultivation can result in replicative senescence or can be related to the emergence of chromosomal alterations responsible for the acquisition of tumorigenesis features in vitro. In this study, for the first time, the expression profile of MSC with a paracentric chromosomal inversion (MSC/inv) was compared to normal karyotype (MSC/n) in early and late passages. Furthermore, we compared the transcriptome of each MSC in early passages with late passages. MSC used in this study were obtained from the umbilical vein of three donors, two MSC/n and one MSC/inv. After their cryopreservation, they have been expanded in vitro until reached senescence. Total RNA was extracted using the RNeasy mini kit (Qiagen) and marked with the GeneChip ® 3 IVT Express Kit (Affymetrix Inc.). Subsequently, the fragmented aRNA was hybridized on the microarranjo Affymetrix Human Genome U133 Plus 2.0 arrays (Affymetrix Inc.). The statistical analysis of differential gene expression was performed between groups MSC by the Partek Genomic Suite software, version 6.4 (Partek Inc.). Was considered statistically significant differences in expression to p-value Bonferroni correction ˂.01. Only signals with fold change ˃ 3.0 were included in the list of differentially expressed. Differences in gene expression data obtained from microarrays were confirmed by Real Time RT-PCR. For the interpretation of biological expression data were used: IPA (Ingenuity Systems) for analysis enrichment functions, the STRING 9.0 for construction of network interactions; Cytoscape 2.8 to the network visualization and analysis bottlenecks with the aid of the GraphPad Prism 5.0 software. BiNGO Cytoscape pluggin was used to access overrepresentation of Gene Ontology categories in Biological Networks. The comparison between senescent and young at each group of MSC has shown that there is a difference in the expression parttern, being higher in the senescent MSC/inv group. The results also showed difference in expression profiles between the MSC/inv versus MSC/n, being greater when they are senescent. New networks were identified for genes related to the response of two of MSC over cultivation time. Were also identified genes that can coordinate functional categories over represented at networks, such as CXCL12, SFRP1, xvi EGF, SPP1, MMP1 e THBS1. The biological interpretation of these data suggests that the population of MSC/inv has different constitutional characteristics, related to their potential for differentiation, proliferation and response to stimuli, responsible for a distinct process of replicative senescence in MSC/inv compared to MSC/n. The genes identified in this study are candidates for biomarkers of cellular senescence in MSC, but their functional relevance in this process should be evaluated in additional in vitro and/or in vivo assays