5 resultados para UBICACIÓN GPS
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Global Positioning System, or simply GPS, it is a radionavigation system developed by United States for military applications, but it becames very useful for civilian using. In the last decades Brazil has developed sounding rockets and today many projects to build micro and nanosatellites has appeared. This kind of vehicles named spacecrafts or high dynamic vehicles, can use GPS for its autonome location and trajectories controls. Despite of a huge number of GPS receivers available for civilian applications, they cannot used in high dynamic vehicles due environmental issues (vibrations, temperatures, etc.) or imposed dynamic working limits. Only a few nations have the technology to build GPS receivers for spacecrafts or high dynamic vehicles is available and they imposes rules who difficult the access to this receivers. This project intends to build a GPS receiver, to install them in a payload of a sounding rocket and data collecting to verify its correct operation when at the flight conditions. The inner software to this receiver was available in source code and it was tested in a software development platform named GPS Architect. Many organizations cooperated to support this project: AEB, UFRN, IAE, INPE e CLBI. After many phases: defining working conditions, choice and searching electronic, the making of the printed boards, assembling and assembling tests; the receiver was installed in a VS30 sounding rocket launched at Centro de Lançamento da Barreira do Inferno in Natal/RN. Despite of the fact the locations data from the receiver were collected only the first 70 seconds of flight, this data confirms the correct operation of the receiver by the comparison between its positioning data and the the trajectory data from CLBI s tracking radar named ADOUR
Resumo:
Spacecraft move with high speeds and suffer abrupt changes in acceleration. So, an onboard GPS receiver could calculate navigation solutions if the Doppler effect is taken into consideration during the satellite signals acquisition and tracking. Thus, for the receiver subject to such dynamic cope these shifts in the frequency signal, resulting from this effect, it is imperative to adjust its acquisition bandwidth and increase its tracking loop to a higher order. This paper presents the changes in the GPS Orion s software, an open architecture receiver produced by GEC Plessey Semiconductors, nowadays Zarlink, in order to make it able to generate navigation fix for vehicle under high dynamics, especially Low Earth Orbit satellites. GPS Architect development system, sold by the same company, supported the modifications. Furthermore, it presents GPS Monitor Aerospace s characteristics, a computational tool developed for monitoring navigation fix calculated by the GPS receiver, through graphics. Although it was not possible to simulate the software modifications implemented in the receiver in high dynamics, it was observed that the receiver worked in stationary tests, verified also in the new interface. This work also presents the results of GPS Receiver for Aerospace Applications experiment, achieved with the receiver s participation in a suborbital mission, Operation Maracati 2, in December 2010, using a digital second order carrier tracking loop. Despite an incident moments before the launch have hindered the effective navigation of the receiver, it was observed that the experiment worked properly, acquiring new satellites and tracking them during the VSB-30 rocket flight.
Resumo:
Satellites signals present disturbances (scintillations), due to presence of irregularities in the ionospheric plasma. In the present work, we dedicate to the study of the attenuation of these scintillations that is, an improvement in the signal, during the main magnetic storm phase during the period of October 2006 to February 2007. Using amplitude of scintillation 1.5GHz (L1) data of the net of satellites GPS, in the ionospheric station of Natal (5.84o S, 35.20o O, -20o dip) and geomagnetic indices, during the minimum solar cycle (referred to as cycle 23), demonstrating its anti-correlation between magnetic activity (Kp) and index of scintillation (
Resumo:
To identify the relationship between GPS scintillation in Natal-RN (Brazil) and geomagnetic disturbances of any intensities and variations, this work made analysis of the ionospheric behavior and magnetic indexes (Dst , AE and Bz of the interplanetary magnetic field) concerning to different periods of the solar cycle between 2000 and 2014. Part of the data of this research originated at the UFRN observatory, from a GEC Plessey board connected to an ANP -C 114 antenna, modified by Cornell University’s Space group Plasma Physics in order to operate the ScintMon, a GPS monitoring program. This study, therefore, found several cases of inhibited scintillations after the main phase of magnetic storms, a fact that, along with others, corroborated with categorization of Aarons (1991) and models of disturbed dynamo (according to Bonelli, 2008) and over-shielding penetration, defended by Kelley et al. (1979) and Abdu (2011) [4]. In addition to these findings, different morphologies were noted in such disruptions in the GPS signal in accordance with previous magnetic activities. It also found a moderate relationship (R2 = 0.52) between the Dst rate (concerning to specific time) and the average of S4 through a polynomial function. This finding therefore, corroborating Ilma et al. (2012) [17], is an important evidence that the scintillation GPS are not directly controlled by magnetic induction of storms. Completing this work, this relation did show itself as a way of partial predicting of scintillations.
Resumo:
O NAVSTAR/GPS (NAVigation System with Timing And Ranging/Global Po- sitioning System), mais conhecido por GPS, _e um sistema de navegacão baseado em sat_elites desenvolvido pelo departamento de defesa norte-americano em meados de 1970. Criado inicialmente para fins militares, o GPS foi adaptado para o uso civil. Para fazer a localização, o receptor precisa fazer a aquisição de sinais dos satélites visíveis. Essa etapa é de extrema importância, pois é responsável pela detecção dos satélites visíveis, calculando suas respectivas frequências e fases iniciais. Esse processo pode demandar bastante tempo de processamento e precisa ser implementado de forma eficiente. Várias técnicas são utilizadas atualmente, mas a maioria delas colocam em conflito questões de projeto tais como, complexidade computacional, tempo de aquisição e recursos computacionais. Objetivando equilibrar essas questões, foi desenvolvido um método que reduz a complexidade do processo de aquisição utilizando algumas estratégias, a saber, redução do efeito doppler, amostras e tamanho do sinal utilizados, além do paralelismo. Essa estratégia é dividida em dois passos, um grosseiro em todo o espaço de busca e um fino apenas na região identificada previamente pela primeira etapa. Devido a busca grosseira, o limiar do algoritmo convencional não era mais aceitável. Nesse sentido, um novo limiar foi estabelecido baseado na variância dos picos de correlação. Inicialmente, é feita uma busca com pouca precisão comparando a variância dos cinco maiores picos de correlação encontrados. Caso a variância ultrapasse um certo limiar, a região de maior pico torna-se candidata à detecção. Por fim, essa região passa por um refinamento para se ter a certeza de detecção. Os resultados mostram que houve uma redução significativa na complexidade e no tempo de execução, sem que tenha sido necessário utilizar algoritmos muito complexos.