5 resultados para U.S. Coast and Geodetic Survey
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The general objective of this thesis has been seasonal monitoring (quarterly time scale) of coastal and estuarine areas of a section of the Northern Coast of Rio Grande do Norte, Brazil, environmentally sensitive and with intense sediment erosion in the oil activities to underpin the implementation of projects for containment of erosion and mitigate the impacts of coastal dynamics. In order to achieve the general objective, the work was done systematically in three stages which consisted the specific objectives. The first stage was the implementation of geodetic reference infrastructure for carrying out the geodetic survey of the study area. This process included the implementation of RGLS (Northern Coast of the RN GPS Network), consisting of stations with geodetic coordinates and orthometric heights of precision; positioning of Benchmarks and evaluation of the gravimetric geoid available, for use in GPS altimetry of precision; and development of software for GPS altimetry of precision. The second stage was the development and improvement of methodologies for collection, processing, representation, integration and analysis of CoastLine (CL) and Digital Elevation Models (DEM) obtained by geodetic positioning techniques. As part of this stage have been made since, the choice of equipment and positioning methods to be used, depending on the required precision and structure implanted, and the definition of the LC indicator and of the geodesic references best suited, to coastal monitoring of precision. The third step was the seasonal geodesic monitoring of the study area. It was defined the execution times of the geodetic surveys by analyzing the pattern of sediment dynamics of the study area; the performing of surveys in order to calculate and locate areas and volumes of erosion and accretion (sandy and volumetric sedimentary balance) occurred on CL and on the beaches and islands surfaces throughout the year, and study of correlations between the measured variations (in area and volume) between each survey and the action of the coastal dynamic agents. The results allowed an integrated study of spatial and temporal interrelationships of the causes and consequences of intensive coastal processes operating in the area, especially to the measurement of variability of erosion, transport, balance and supply sedimentary over the annual cycle of construction and destruction of beaches. In the analysis of the results, it was possible to identify the causes and consequences of severe coastal erosion occurred on beaches exposed, to analyze the recovery of beaches and the accretion occurring in tidal inlets and estuaries. From the optics of seasonal variations in the CL, human interventions to erosion contention have been proposed with the aim of restoring the previous situation of the beaches in the process of erosion.
Resumo:
The objective of this Doctoral Thesis was monitoring, in trimestral scale, the coastal morphology of the Northeastern coast sections of Rio Grande do Norte State, in Brazil, which is an area of Potiguar Basin influenced by the oil industry activities. The studied sections compose coastal areas with intense sedimentary erosion and high environmental sensitivity to the oil spill. In order to achieve the general objective of this study, the work has been systematized in four steps. The first one refers to the evaluation of the geomorphological data acquisition methodologies used on Digital Elevation Model (DEM) of sandy beaches. The data has been obtained from Soledade beach, located on the Northeastern coast of Rio Grande Norte. The second step has been centered on the increasing of the reference geodetic infrastructure to accomplish the geodetic survey of the studied area by implanting a station in Corta Cachorro Barrier Island and by conducting monitoring geodetic surveys to understand the beach system based on the Coastline (CL) and on DEM multitemporal analysis. The third phase has been related to the usage of the methodology developed by Santos; Amaro (2011) and Santos et al. (2012) for the surveying, processing, representation, integration and analysis of Coastlines from sandy coast, which have been obtained through geodetic techniques of positioning, morphological change analysis and sediment transport. The fourth stage represents the innovation of surveys in coastal environment by using the Terrestrial Laser Scanning (TLS), based on Light Detection and Ranging (LiDAR), to evaluate a highly eroded section on Soledade beach where the oil industry structures are located. The evaluation has been achieved through high-precision DEM and accuracy during the modeling of the coast morphology changes. The result analysis of the integrated study about the spatial and temporal interrelations of the intense coastal processes in areas of building cycles and destruction of beaches has allowed identifying the causes and consequences of the intense coastal erosion in exposed beach sections and in barrier islands
Resumo:
Digital Elevation Models (DEM) are numerical representations of a portion of the earth surface. Among several factors which affect the quality of a DEM, it should be emphasized the attention on the input data and the choice of the interpolating algorithm. On the other hand, several numerical models are used nowadays to characterize nearshore hydrodynamics and morphological changes in coastal areas, whose validation is based on field data collection. Independent on the complexity of the physical processes which are modeled, little attention has been given to the intrinsic bathymetric interpolation built within the numerical models of the specific application. Therefore, this study aims to investigate and to quantify the influence of the bathymetry, as obtained by a DEM, on the hydrodynamic circulation model at a coastal stretch, off the coast of the State of Rio Grande do Norte, Northeast Brazil. This coastal region is characterized by strong hydrodynamic and littoral processes, resulting in a very dynamic morphology with shallow coastal bathymetry. Important economic activities, such as oil exploitation and production, fisheries, salt ponds, shrimp farms and tourism, also bring impacts upon the local ecosystems and influence themselves the local hydrodynamics. This fact makes the region one of the most important for the development of the State, but also enhances the possibility of serious environmental accidents. As a hydrodynamic model, SisBaHiA® - Environmental Hydrodynamics System ( Sistema Básico de Hidrodinâmica Ambiental ) was chosen, for it has been successfully employed at several locations along the Brazilian coast. This model was developed at the Coastal and Oceanographical Engineering Group of the Ocean Engineering Program at the Federal University of Rio de Janeiro. Several interpolating methods were tested for the construction of the DEM, namely Natural Neighbor, Kriging, Triangulation with Linear Interpolation, Inverse Distance to a Power, Nearest Neighbor, and Minimum Curvature, all implemented within the software Surfer®. The bathymetry which was used as reference for the DEM was obtained from nautical charts provided by the Brazilian Hydrographic Service of the Brazilian Navy and from a field survey conducted in 2005. Changes in flow velocity and free surface elevation were evaluated under three aspects: a spatial vision along three profiles perpendicular to the coast and one profile longitudinal to the coast as shown; a temporal vision from three central nodes of the grid during 30 days; a hodograph analysis of components of speed in U and V, by different tidal cycles. Small, but negligible, variations in sea surface elevation were identified. However, the differences in flow and direction of velocities were significant, depending on the DEM
Resumo:
The general objective of this thesis has been seasonal monitoring (quarterly time scale) of coastal and estuarine areas of a section of the Northern Coast of Rio Grande do Norte, Brazil, environmentally sensitive and with intense sediment erosion in the oil activities to underpin the implementation of projects for containment of erosion and mitigate the impacts of coastal dynamics. In order to achieve the general objective, the work was done systematically in three stages which consisted the specific objectives. The first stage was the implementation of geodetic reference infrastructure for carrying out the geodetic survey of the study area. This process included the implementation of RGLS (Northern Coast of the RN GPS Network), consisting of stations with geodetic coordinates and orthometric heights of precision; positioning of Benchmarks and evaluation of the gravimetric geoid available, for use in GPS altimetry of precision; and development of software for GPS altimetry of precision. The second stage was the development and improvement of methodologies for collection, processing, representation, integration and analysis of CoastLine (CL) and Digital Elevation Models (DEM) obtained by geodetic positioning techniques. As part of this stage have been made since, the choice of equipment and positioning methods to be used, depending on the required precision and structure implanted, and the definition of the LC indicator and of the geodesic references best suited, to coastal monitoring of precision. The third step was the seasonal geodesic monitoring of the study area. It was defined the execution times of the geodetic surveys by analyzing the pattern of sediment dynamics of the study area; the performing of surveys in order to calculate and locate areas and volumes of erosion and accretion (sandy and volumetric sedimentary balance) occurred on CL and on the beaches and islands surfaces throughout the year, and study of correlations between the measured variations (in area and volume) between each survey and the action of the coastal dynamic agents. The results allowed an integrated study of spatial and temporal interrelationships of the causes and consequences of intensive coastal processes operating in the area, especially to the measurement of variability of erosion, transport, balance and supply sedimentary over the annual cycle of construction and destruction of beaches. In the analysis of the results, it was possible to identify the causes and consequences of severe coastal erosion occurred on beaches exposed, to analyze the recovery of beaches and the accretion occurring in tidal inlets and estuaries. From the optics of seasonal variations in the CL, human interventions to erosion contention have been proposed with the aim of restoring the previous situation of the beaches in the process of erosion.
Resumo:
The objective of this Doctoral Thesis was monitoring, in trimestral scale, the coastal morphology of the Northeastern coast sections of Rio Grande do Norte State, in Brazil, which is an area of Potiguar Basin influenced by the oil industry activities. The studied sections compose coastal areas with intense sedimentary erosion and high environmental sensitivity to the oil spill. In order to achieve the general objective of this study, the work has been systematized in four steps. The first one refers to the evaluation of the geomorphological data acquisition methodologies used on Digital Elevation Model (DEM) of sandy beaches. The data has been obtained from Soledade beach, located on the Northeastern coast of Rio Grande Norte. The second step has been centered on the increasing of the reference geodetic infrastructure to accomplish the geodetic survey of the studied area by implanting a station in Corta Cachorro Barrier Island and by conducting monitoring geodetic surveys to understand the beach system based on the Coastline (CL) and on DEM multitemporal analysis. The third phase has been related to the usage of the methodology developed by Santos; Amaro (2011) and Santos et al. (2012) for the surveying, processing, representation, integration and analysis of Coastlines from sandy coast, which have been obtained through geodetic techniques of positioning, morphological change analysis and sediment transport. The fourth stage represents the innovation of surveys in coastal environment by using the Terrestrial Laser Scanning (TLS), based on Light Detection and Ranging (LiDAR), to evaluate a highly eroded section on Soledade beach where the oil industry structures are located. The evaluation has been achieved through high-precision DEM and accuracy during the modeling of the coast morphology changes. The result analysis of the integrated study about the spatial and temporal interrelations of the intense coastal processes in areas of building cycles and destruction of beaches has allowed identifying the causes and consequences of the intense coastal erosion in exposed beach sections and in barrier islands