10 resultados para U-Pb (zircon)
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The ediacaran plutonic activity related to the Brasilian/Pan-African orogeny is one of the most important geological features in the Borborema Province, represented along its extension by numerous batholiths, stocks, and dikes.The object of this study, the Serra Rajada Granitic Pluton (SRGP), located in the central portion of the Piranhas-Seridó River Domain is an example of this activity. This pluton has been the subject of cartographic, petrographic, geochronological and lithogeochemical studies and its rocks were characterized by two facies. First, the granitic facies were described as monzogranites consisting of K-feldspar, plagioclase (oligoclase - An23-24%), quartz and biotite (main mafic) and opaque minerals such as titanite, allanite, apatite, and zircon as accessories. Alteration minerals are chlorite, white mica and carbonate. Second, the dioritic facies consist of rocks formed by quartz diorite containing plagioclase (dominant mineral phase), quartz and K-feldspar. Biotite and amphibole are the dominant mafic minerals; and titanite, opaque minerals, allanite, zircon and apatite are the accessories. However, previous geological mapping work in the region also identified the presence of other lithostratigraphic units. These were described as gneisses and migmatites with undifferentiated amphibolite lenses related to the Caicó Complex (Paleoproterozoic) and metasedimentary rocks of the Seridó Group (Neoproterozoic) composed of paragneiss with calc-silicate lenses, muscovite quartzite and biotite schist (respectively, the Jucurutu formations, Equador and Seridó), the host rocks for the SRGP rocks. Leucomicrogranite and pegmatite dikes have also been identified, both related to the end of the Ediacaran magmatism and colluvial- eluvial and alluvial deposits related to Neogene and Quaternary, respectively. Lithogeochemical data on the SRGP granite facies, highlighted quite evolved rocks (SiO2 69% to 75%), rich in alkalis (Na2O+K2O ≥ 8.0%), depleted of MgO (≤ 0.45%), CaO (≤ 1.42%) and TiO2 (≤ 0.36%) and moderate levels of Fe2O3t (2.16 to 3.53%). They display transitional nature between metaluminous and peraluminous (predominance of the latter) with sub-alkaline/monzonitic (High K calcium-alkali) affinity. Harker diagrams show negative correlations for Fe2O3t, MgO, and CaO, indicating mafic and plagioclase fractionation. REE spectrum shows enrichment of LREE relative to heavy REE (LaN/YbN = 23.70 to 10.13), with negative anomaly in the Eu (Eu/Eu* = 0.70 to 0.23), suggesting fractionation or accumulation in the feldspars source (plagioclase). Data integration allows to correlate the SRGP rocks with those described as Calcium-Alkaline Suite of equigranular High K. The crystallization conditions of the SRGP rocks were determined from the integration of petrographic and lithogeochemical data. These data indicated intermediate to high conditions of ƒO2 (mineral paragenesis titanite + magnetite + quartz), parent magma saturated in H2O (early biotite crystallization), tardi-magmatic processes of fluids rich in ƒCO2, H2O and O2 causing part of the mineral assembly to change (plagioclase carbonation and saussuritization, biotite chloritization and opaques Sphenitization). Thermobarometrical conditions were estimated based on geochemical parameters (Zr and P2O5) and CIPW normative minerals, with results showing the liquidus minimum temperature of about800°C and the solidus temperature of approximately 700°C. The final/minimum crystallization pressure are suggested to be between 3 and 5 Kbar. The presence of zoned minerals (plagioclase and allanite) associated with lithogeochemical data in bi-log diagrams for Rb vs. Ba and Rb vs. Sr suggest the role of fractional crystallization as the dominant process in the magmatic evolution of SRGP. U-Pb Geochronological and Sm-Nd isotope studies indicated, respectively, the crystallization age of biotite monzogranite as 557 ± 13 Ma, with TDM model age of 2.36 Ga, and εNd value of -20.10 to the crystallization age, allowing to infer paleoproterozoic crustal source for the magma.
Resumo:
The ediacaran plutonic activity related to the Brasilian/Pan-African orogeny is one of the most important geological features in the Borborema Province, represented along its extension by numerous batholiths, stocks, and dikes.The object of this study, the Serra Rajada Granitic Pluton (SRGP), located in the central portion of the Piranhas-Seridó River Domain is an example of this activity. This pluton has been the subject of cartographic, petrographic, geochronological and lithogeochemical studies and its rocks were characterized by two facies. First, the granitic facies were described as monzogranites consisting of K-feldspar, plagioclase (oligoclase - An23-24%), quartz and biotite (main mafic) and opaque minerals such as titanite, allanite, apatite, and zircon as accessories. Alteration minerals are chlorite, white mica and carbonate. Second, the dioritic facies consist of rocks formed by quartz diorite containing plagioclase (dominant mineral phase), quartz and K-feldspar. Biotite and amphibole are the dominant mafic minerals; and titanite, opaque minerals, allanite, zircon and apatite are the accessories. However, previous geological mapping work in the region also identified the presence of other lithostratigraphic units. These were described as gneisses and migmatites with undifferentiated amphibolite lenses related to the Caicó Complex (Paleoproterozoic) and metasedimentary rocks of the Seridó Group (Neoproterozoic) composed of paragneiss with calc-silicate lenses, muscovite quartzite and biotite schist (respectively, the Jucurutu formations, Equador and Seridó), the host rocks for the SRGP rocks. Leucomicrogranite and pegmatite dikes have also been identified, both related to the end of the Ediacaran magmatism and colluvial- eluvial and alluvial deposits related to Neogene and Quaternary, respectively. Lithogeochemical data on the SRGP granite facies, highlighted quite evolved rocks (SiO2 69% to 75%), rich in alkalis (Na2O+K2O ≥ 8.0%), depleted of MgO (≤ 0.45%), CaO (≤ 1.42%) and TiO2 (≤ 0.36%) and moderate levels of Fe2O3t (2.16 to 3.53%). They display transitional nature between metaluminous and peraluminous (predominance of the latter) with sub-alkaline/monzonitic (High K calcium-alkali) affinity. Harker diagrams show negative correlations for Fe2O3t, MgO, and CaO, indicating mafic and plagioclase fractionation. REE spectrum shows enrichment of LREE relative to heavy REE (LaN/YbN = 23.70 to 10.13), with negative anomaly in the Eu (Eu/Eu* = 0.70 to 0.23), suggesting fractionation or accumulation in the feldspars source (plagioclase). Data integration allows to correlate the SRGP rocks with those described as Calcium-Alkaline Suite of equigranular High K. The crystallization conditions of the SRGP rocks were determined from the integration of petrographic and lithogeochemical data. These data indicated intermediate to high conditions of ƒO2 (mineral paragenesis titanite + magnetite + quartz), parent magma saturated in H2O (early biotite crystallization), tardi-magmatic processes of fluids rich in ƒCO2, H2O and O2 causing part of the mineral assembly to change (plagioclase carbonation and saussuritization, biotite chloritization and opaques Sphenitization). Thermobarometrical conditions were estimated based on geochemical parameters (Zr and P2O5) and CIPW normative minerals, with results showing the liquidus minimum temperature of about800°C and the solidus temperature of approximately 700°C. The final/minimum crystallization pressure are suggested to be between 3 and 5 Kbar. The presence of zoned minerals (plagioclase and allanite) associated with lithogeochemical data in bi-log diagrams for Rb vs. Ba and Rb vs. Sr suggest the role of fractional crystallization as the dominant process in the magmatic evolution of SRGP. U-Pb Geochronological and Sm-Nd isotope studies indicated, respectively, the crystallization age of biotite monzogranite as 557 ± 13 Ma, with TDM model age of 2.36 Ga, and εNd value of -20.10 to the crystallization age, allowing to infer paleoproterozoic crustal source for the magma.
Resumo:
The of Serrinha plutonic suite, northeastern portion of the Borborema Province (NE Brazil), is characterized by a voluminous and diversified magmatism of Neoproterozoic age, intrusive in the Archean to Paleoproterozoic gneissic-migmatitic basement of the São José de Campestre massif. Field relations and petrographic and geochemical data allowed us to individualize different lithologic types among this plutonic suite, which is represented by intermediate to mafic enclaves, porphyritic diorites, porphyritic granitoids, porphyritic granodiorites, microporphyritic granites and dykes/sheets of microgranite. The intermediate-to-mafic enclaves occur associated with porphyritic granitoids, showing mixture textures. The porphyrytic diorites occur as isolated bodies, generally associated with intermediate-to-mafic enclaves and locally as enclaves within porphyritic granites. The granodiorites represent mixing between an intermediate to mafic magma with an acidic one. The micropophyritic granites occur as isolated small bodies, generally deformed, while the microgranite dykes/sheets crosscut all the previous granitoids. A U-Pb zircon age of 576 + 3 Ma was obtained for the Serrinha granite. This age is interpreted as age of the peak of the regional ductile deformational event (D3) and of the associated the E-W Rio Jacu shear zone, which control the emplacement of the Neoproterozoic syntectonic plutons. The porphyrytic granitoids show monzogranitic composition, transitional between peraluminous and metaluminous types, typically of the high potassium subalkaline-calc-alkaline series. The intermediate-to-mafic enclaves present vary from quartz diorite to tonalite/granodiorite, with metaluminous, shoshonitic affinity. The diorites are generally quartz-monzodiorite in composition, with metaluminous, subalkaline affinity. They display coarse-grained, inequigranular, porphyrytic texture, with predominance of plagioclase phenocrystals immersed in a matrix composed of biotite and pyroxenes. The microporphyrytic granites are essentially monzogranites of fine- to medium-grained texture, whereas microgranite dikes/sheets varying from monzogranites to syenogranites, with fine to media texture, equigranular. The diversified magmatism occurring at a relatively small surface associated with shear zones, suggests lithospheric dimensions for such structures, with magma extractions from different depths within the lower crust and upper mantle. The geological, geochemical and geochronological characteristics of the Serrinha plutonic suite suggest a pos-collisional geodynamic context for the Neoproterozoic magmatism. Thermobarometric data show emplacement conditions in the range 5-6 kbar (AlTamphibole) and 730-740°C (plagioclase-amphibole) for the porphyrytic granitoids (Serrinha body) and the intermediate-to-mafic enclaves
Resumo:
The Bom Jardim de Goiás Pluton (PBJG) is a semi-circular body, located in the central portion of the Tocantins Province, intrusive into orthogneisses and metassupracrustals of the Arenópolis Magmatic Arc. These metasupracrustals present a low to moderate dipping banding or schistosity, have a low to moderate angle of banding / foliation, defined by mica, andalusite and sillimanite and cordierite, which characterize an amphibolite facies metamorphism. This structure is crosscut by the emplacement of the PBJG rocks. The abrupt nature of the contacts and the absence of ductile structures indicate that the intrusion took place in a relatively cold crust. Under petrographic grounds, the pluton consists mainly of monzodiorites, tonalite and granodiorite, following the low to medium-K calk-alkaline alkaline trend. Rocks of the PBJG have hornblende and biotite as the main mafic phases, besides subordinate clinopyroxene, titanite, epidote and opaque. Late dikes of leucogranite contain only mineral biotite as relevant accessory mineral. One U-Pb zircon dating of a monzodiorite yielded an age of 550 ± 12 Ma (MSWD = 1.06). Whole-rock and mineral chemistry suggest that the studied rocks are calc-alkaline, having evolved by fractional crystallization of Ca- and Fe-Mg minerals under high oxygen fugacity. Using the amphibole-plagioclase geothermometer and the Al-in amphibole geobarometer, we calculate temperatures and pressures of, respectively, 692-791 °C e 2.4-5.0 kbar for the intrusion of the PBJG, which is corroborated by previous metamorphic assemblages in the country rocks. The geological, geochemical and geochronological features of PBJG demonstrate their post-tectonic or post-collisional nature, with emplacement into an already uplifted and relatively cool crust at the end of brasiliano orogeny in this portion of the Tocantins Province.
Resumo:
The Bom Jardim de Goiás Pluton (PBJG) is a semi-circular body, located in the central portion of the Tocantins Province, intrusive into orthogneisses and metassupracrustals of the Arenópolis Magmatic Arc. These metasupracrustals present a low to moderate dipping banding or schistosity, have a low to moderate angle of banding / foliation, defined by mica, andalusite and sillimanite and cordierite, which characterize an amphibolite facies metamorphism. This structure is crosscut by the emplacement of the PBJG rocks. The abrupt nature of the contacts and the absence of ductile structures indicate that the intrusion took place in a relatively cold crust. Under petrographic grounds, the pluton consists mainly of monzodiorites, tonalite and granodiorite, following the low to medium-K calk-alkaline alkaline trend. Rocks of the PBJG have hornblende and biotite as the main mafic phases, besides subordinate clinopyroxene, titanite, epidote and opaque. Late dikes of leucogranite contain only mineral biotite as relevant accessory mineral. One U-Pb zircon dating of a monzodiorite yielded an age of 550 ± 12 Ma (MSWD = 1.06). Whole-rock and mineral chemistry suggest that the studied rocks are calc-alkaline, having evolved by fractional crystallization of Ca- and Fe-Mg minerals under high oxygen fugacity. Using the amphibole-plagioclase geothermometer and the Al-in amphibole geobarometer, we calculate temperatures and pressures of, respectively, 692-791 °C e 2.4-5.0 kbar for the intrusion of the PBJG, which is corroborated by previous metamorphic assemblages in the country rocks. The geological, geochemical and geochronological features of PBJG demonstrate their post-tectonic or post-collisional nature, with emplacement into an already uplifted and relatively cool crust at the end of brasiliano orogeny in this portion of the Tocantins Province.
Resumo:
The Serra do Caramuru and Tapuio stocks, located in the extreme NE of Rio Piranhas-Seridó Domain (RN), are representative of the Ediacaran-Cambrian magmatism, an important magmatic feature of the Brasilian / Panafrican orogeny of the Borborema Province. These bodies are lithologically similar, intrusive in paleoproterozoic gneiss embasement, being separated by a thin belt of mylonitic orthogneiss. The field relations show a magmatic stratigraphy initiated by dioritic facies that coexists with the porphyritic granitic and equigranular granitic I facies, and less frequently with equigranular granitic II facies. These rocks are crosscut by late granitic dykes and sheets with NE-SW / NNE-SSW orientation. The dioritic facies (diorite, quartz diorite, quartz monzodiorites, tonalite and granodiorite) is leucocratic to melanocratic, rich in biotite and hornblende. The granitic facies are hololeucocratic to leucocratic, and have biotite ± hornblende. Petrographic and geochemical (whole rock) data, especially from Serra do Caramuru pluton, suggest fractionation of zircon, apatite, clinopyroxene (in diorites), opaque minerals, titanite, biotite, hornblende, allanite, plagioclase, microcline and garnet (in dykes). The behavior of trace elements such as Zr, La and Yb indicates that the dioritic magma does not constitute the parental magma for the granitic facies. On the other hand, the granitic facies seems to be cogenetic to each other, displaying differentiation trends and very similar rare earth elements (REE) spectra [12.3≤(La/Yb)N≤190.8; Eu/Eu*=0.30-0.68]. Field relationships and REE patterns [6.96≤(La/Yb)N≤277.8; Eu/Eu*=0.18-0.58] demonstrate that the granitic dykes and sheets are not cogenetically related to the Serra do Caramuru magmatism. The dioritic facies is metaluminous (A/CNK = 0.88-0.74) and shoshonitic, whereas the granitic ones are metaluminous to peraluminous (A/CNK = 1.08-0.93) and high potassium calc-alkaline. Dykes and sheets are strictly peraluminous (A/CNK = 1.01-1.04). Binary diagrams relating compatible and incompatible trace elements and microtextures indicate the fractional crystallization as the dominant mechanism of magmatic evolution of the various facies. The Serra do Caramuru and Tapuio stocks have well preserved magmatic fabric, do not show metamorphic minerals and are structurally isotropic, showing crosscutting contact with the ductile fabric of the basement. These observations lead to interpretate a stage of relative tectonic stability, consistent with the orogenic relaxation period of the Brasiliano / Pan-African orogeny. Chemical plots involving oxides and trace elements indicate late to post-collisional emplacement. In this context, the assumed better mechanism to describe the stocks emplacement within an extensional T Riedel joint, with ENE-WSW extensional vector. The U-Pb zircon age of 553 ± 10 Ma allows correlating the Serra do Caramuru magmatism to the group of post-collisional bodies, equigranular high potassium calc-alkaline granites of the NE of Rio Piranhas-Seridó Domain.
Resumo:
The Serra do Caramuru and Tapuio stocks, located in the extreme NE of Rio Piranhas-Seridó Domain (RN), are representative of the Ediacaran-Cambrian magmatism, an important magmatic feature of the Brasilian / Panafrican orogeny of the Borborema Province. These bodies are lithologically similar, intrusive in paleoproterozoic gneiss embasement, being separated by a thin belt of mylonitic orthogneiss. The field relations show a magmatic stratigraphy initiated by dioritic facies that coexists with the porphyritic granitic and equigranular granitic I facies, and less frequently with equigranular granitic II facies. These rocks are crosscut by late granitic dykes and sheets with NE-SW / NNE-SSW orientation. The dioritic facies (diorite, quartz diorite, quartz monzodiorites, tonalite and granodiorite) is leucocratic to melanocratic, rich in biotite and hornblende. The granitic facies are hololeucocratic to leucocratic, and have biotite ± hornblende. Petrographic and geochemical (whole rock) data, especially from Serra do Caramuru pluton, suggest fractionation of zircon, apatite, clinopyroxene (in diorites), opaque minerals, titanite, biotite, hornblende, allanite, plagioclase, microcline and garnet (in dykes). The behavior of trace elements such as Zr, La and Yb indicates that the dioritic magma does not constitute the parental magma for the granitic facies. On the other hand, the granitic facies seems to be cogenetic to each other, displaying differentiation trends and very similar rare earth elements (REE) spectra [12.3≤(La/Yb)N≤190.8; Eu/Eu*=0.30-0.68]. Field relationships and REE patterns [6.96≤(La/Yb)N≤277.8; Eu/Eu*=0.18-0.58] demonstrate that the granitic dykes and sheets are not cogenetically related to the Serra do Caramuru magmatism. The dioritic facies is metaluminous (A/CNK = 0.88-0.74) and shoshonitic, whereas the granitic ones are metaluminous to peraluminous (A/CNK = 1.08-0.93) and high potassium calc-alkaline. Dykes and sheets are strictly peraluminous (A/CNK = 1.01-1.04). Binary diagrams relating compatible and incompatible trace elements and microtextures indicate the fractional crystallization as the dominant mechanism of magmatic evolution of the various facies. The Serra do Caramuru and Tapuio stocks have well preserved magmatic fabric, do not show metamorphic minerals and are structurally isotropic, showing crosscutting contact with the ductile fabric of the basement. These observations lead to interpretate a stage of relative tectonic stability, consistent with the orogenic relaxation period of the Brasiliano / Pan-African orogeny. Chemical plots involving oxides and trace elements indicate late to post-collisional emplacement. In this context, the assumed better mechanism to describe the stocks emplacement within an extensional T Riedel joint, with ENE-WSW extensional vector. The U-Pb zircon age of 553 ± 10 Ma allows correlating the Serra do Caramuru magmatism to the group of post-collisional bodies, equigranular high potassium calc-alkaline granites of the NE of Rio Piranhas-Seridó Domain.
Resumo:
This thesis aims to advance in the geological knowledge of the region comprising the Piancó-Alto Brígida (TPAB) and Alto pajeú (TAP) terranes, in the Transversal Zone Domain (Borborema Province, NE Brazil), with the main objective of understanding the geodynamic evolution and the structural framework of these units. To reach this objective, and besides field work and interpretation of traditional aerial photographs, other tools were employed like of remote sensing products (Landsat 7 ETM+, aeroradiometrics, aeromagnetics and topographical images), lithogeochemical (whole rock) analyses and geochronological dating (U-Pb in zircon), besides integration with literature data. In the area, several precambrian geological units outcrop, represented in the TAP by the paleoproterozoic Serra Talhada and Afogados da Ingazeira complexes, Riacho Gravatá Complex (metavolcano-sedimentary sequence of Stenian-Tonian age) and Cariris Velhos orthogneisses (of Tonian age). The TPAB comprises the Santana do Garrote (lower unit) and Serra do Olho d'Água (upper unit) formations of the Cachoeirinha Group (Neoproterozoic III), besides the Piancó orthogneisses and Bom Jesus paragneisses; the latter correspond to an older (basement ?) block and a possible high grade equivalent of the Cachoeirinha Group (or Seridó Group ?), respectively. Several Brasiliano-age plutons occur in both terranes.The aeromagnetic data show the continuity, at depth, of the main shear zones mapped in the region. The Patos, Pernambuco, Boqueirão dos Cochos, Serra do Caboclo, Afogados da Ingazeira/Jabitacá and Congo-Cruzeiro do Nordeste shear zones reach depths greater than to 6-16 km. The aeromagnetic signature of other shear zones, like the Juru one, suggests that these structures correspond to shallower crustal features. The satellite images (Landsat 7 ETM+) and aerogamaspectrometric images discriminate different geological units, contributing to the mapping of the structural framework of the region. The Serra do Caboclo Shear Zone was characterized as the boundary/suture between the TPAB and TAP. This structure is an outstanding, pervasive feature that separates contrasting geological units, such as the Neoproterozoic III Cachoeirinha Group in the TPAB and the Riacho Gravatá Complex and the Cariris Velhos metaplutonics, of Stenian-Tonian age, in the TAP. Occupying different blocks, these units are not found in authoctonous relations, like unconformities and intrusive contacts. Concerning the Cariris Velhos (ca. 1,0 Ga old) event is recorded by radiometric ages of the Riacho Gravatá Complex metavolcanics and intrusive augen and orthogneisses, all of them displaying geochemical affinities of arc or collisional settings. A structural signature of this event was not recorded in the region, possibly due to its low grade/low strain style, obliterated by the overprinting of younger, higher grade/high strain Brasiliano-age fabrics.The first tectonic event (D1) observed in the Cariris Velhos lithotypes presents contractional kinematics with transport to the NW. Neoproterozoic III geochronologic dates, obtained in late-D1 granitoids, imply a Brasiliano age (ca. 610-600 Ma) for this deformation event. The second tectonic event (D2) characterized in the region corresponds to the Brasiliano transcurrent kinematics of the outstanding shear zones and associated granitoid plutons. The geochronological (U-Pb in zircon) data obtained during this thesis also confirms the occurrence of the Cariris Velhos magmatic suite in the TAP, as well as the Neoproterozoic III age to the Cachoeirinha Group in the TPAB. The TAP (Riacho Gravatá Complex, augen and orthogneisses) is interpreted as a continental arc possibly accreted to a microcontinent during the Cariris Velhos (Stenian-Tonian) event. Later on, this terrane collided with the TPAB at the beginning of the Brasiliano orogeny (D1 contractional deformation), and both domins were reworked by the transcurrent shear deformation of the D2 event
Resumo:
The studied area is geologically located in the Northern Domain of the Borborema Province (Northeast Brazil), limited to the south by the Patos shear zone. Terranes of the Jaguaribeano system are dominant, flanked by the Piranhas (E and S sides) and Central Ceará (NE side) terranes. Its basement comprises gneiss -migmatite terrains of Paleoproterozoic to Archean age (2.6 to 1.9 Ga old), overprinted by neoproterozoic to cambrian tectonotherma l events. Narrow supracrustal belts ( schist belts) display a 1.6 to 1.8 Ga age, as shown by whole - rock Rb-Sr and zircon U-Pb and Pb/Pb dates in acid metavolcanics which dominate in the lower section of these sequences, and in coeval metaplutonics (granitic augen gneisses). From the stratigraphic point of view, three Staterian belts are recognized: 1. Orós Belt - made up by the Orós Group, subdivided in the Santarém (predominantly pure to impure quartzites, micaschists and metacarbonates) and Campo Alegre (metandesites, metabasalts, metarhyolites and metarhyodacites, interlayered with metatuffs and metasediments) formations, and by the Serra do Deserto Magmatic Suite (granitic augen gneisses). 2. Jaguaribe Belt - its lithostratigrahic-lithodemic framework is similar to the one of the Orós Belt, however with a greater expression of the volcano -plutonic components (Campo Alegre Formation and Serra do Deserto Magmatic Suite). The Peixe Gordo Sequence, separately described, is also related to this belt and contain s metasedimentary, metavolcanic (with subordinated volcanoclastics) and metaplutonic units. The first one correlated to the Orós Group and the latter the Serra do Deserto Magmatic Suite. 3. Western Potiguar Belt - represented by the Serra de São José Gro up, subdivided in the Catolezinho (biotite -amphibole gneisses with intercalations of metacarbonates, calcsilicate rocks, amphibolites and quartzite beds to the top) and Minhuins (quartzites, micaschists, metaconglomerates, calcsilicate rocks, acid to the b asic metavolcanics and metatuffs) formations. Its late Paleoproterozoic (Staterian) age was established by a Pb/Pb date on zircons from a granitic orthogneiss of the Catolezinho Formation. The petrographic characteristics and sedimentary structures of the Santarém Formation of the Orós Group point to deltaic to shallow marine depositional systems, overlain by deep water deposits (turbidites). The geodynamic setting of this region encompassed a large depositional basin, probably extending to the east of the Portalegre shear zone and west of the Senador Pompeu shear zone, with possible equivalents in the Jucurutu Formation of the Seridó Belt and in the Ceará Group of central Ceará. The Arneiróz Belt, west Ceará, displays some stratigraphic features and granito ids geochemically akin to the ones of the Orós Belt. The evolutionary setting started with an extensional phase which was more active in the eastern part of this domain (Western Potiguar and part of the Jaguaribe belts), where the rudite and psamite sedime ntation relates to a fluviatile rift environment which evolved to a prograding deltaic system to the west (Orós Group). The basaltic andesitic and rhyolitic volcanics were associated to this extensional phase. During this magmatic event, acid magmas also crystallized at plutonic depths. The Orós Group illustrates the environmental conditions in the western part of this domain. Later on, after a large time gap (1.6 to 1.1 Ga), the region was subjected to an extensional deformational episode marked by 900 Ma old (Sm-Nd data) basic rocks, possibly in connection with the deposition of the Cachoeirinha Group south of the Patos shear zone. In the 800 to 500 Ma age interval, the region was affected by important deformational and metamorphic events coupled with in trusion of granitic rocks of variable size (dykes to batholiths), related to the Brasiliano/Pan -African geotectonic cycle. These events produced structural blocks which differentiate, one from the other, according to the importance of anatectic mobilizatio n, proportion of high-grade supracrustals and the amount of neoproterozoic -cambrian granitoid intrusions. On this basis, a large portion of the Jaguaretama Block/Terrane is relatively well preserved from this late overprint. The border belts of the Jagua retama Block (Western Potiguar and Arneiroz) display kyanite-bearing (medium pressure) mineral associations, while in the inner part of the block there is a north-south metamorphic zoning marked by staurolite or sillimanite peak metamorphic conditions. Regarding the deformations of the Staterian supracrustal rocks, second and third phases were the most important, diagnosed as having developed in a progressive tectonic process. In the general, more vigorous conditions of PT are related to the interval tardi - phase 2 early-phase 3, whose radiometric ages and regional structuring indicators places it in the Brasiliano/Pan-African Cycle. In the Staterian geodynamic setting of Brazilian Platform , these sequences are correlated to the lower Espinhaço Supergroup (p.ex., Rio dos Remédios and Paraguaçu groups, a paleproterozoic rift system in the São Francisco Craton), the Araí and Serra da Mesa groups (north of Goiás, in the so -called Goiás Central Massif), and the Uatumã Group (in the Amazonian Craton). Granitic ( augen gneisses) plutonics are also known from these areas, as for example the A-type granites intrusive in the Araí and Serra da Mesa groups, dated at 1.77 Ga. Gravimetric and geological data place the limits of the Jaguaribeano System (terranes) along the Senador Pompeu Shear Zone (western border) and the Portalegre- Farias Brito shear zone (eastern and southern). However, the same data area not conclusive as regards the interpretation of those structures as suture of the terrane docking process. The main features of those shear zones and of involved lothological associations, appear to favour an intracontinental transpressional -transcurrent regime, during Neoproterozoic-Cambrian times, marking discontinuities along which different crustal blocks were laterally dispersed. Inside of this orogenic system and according to the magnetic data (total field map), the most important terrane boundary appears to be the Jaguaribe shear zone. The geochronological data, on some tectonostratigraphic associations (partly represented by the Ceará and Jucurutu groups), still at a preliminary level, besides the lack of granitic zonation and other petrotectonic criteria, do not allow to propose tectonic terrane assembly diagrams for the studied area
Resumo:
The area studied is located on the north-easternmost portion of the Borborema Province, on the so-called São José de Campestre Massif, States of RN and PB, Northeast Brazil. Field relations and petrographic, geochemical and isotope data permitted the separation of five suites of plutonic rocks: alkali-feldspar granite (Caxexa Pluton), which constitutes the main subject of this dissertation, amphibole-biotite granite (Cabeçudo Pluton), biotite microgranite, gabbronorite to monzonite (Basic to Intermediate Suite) and aluminous granitoid. The Caxexa Pluton is laterally associated to the Remígio Pocinhos Shear Zone, with its emplacement along the mylonitic contact between the gneissic basement and the micashists. This pluton corresponds to a syntectonic intrusion elongated in the N-S direction, with about 50 km2 of outcropping surface. It is composed exclusively of alkali-feldspar granites, having clinopyroxene (aegirine-augite and hedenbergite), andradite-rich garnet, sphene and magnetite. It is classified geochemically as high silica rocks (>70 % wt), metaluminous to slightly peraluminous (normative corindon < 1%), with high total alkalis (>10% wt), Sr, iron number (#Fe=90-98) and agpaitic index (0.86-1.00), and positive europium anomaly. The Cabeçudo Pluton is composed of porphyritic rocks, commonly containing basic to intermediate magmatic enclaves often with mingling and mixing textures. Petrographically, it presents k-feldspar and plagioclase phenocrysts as the essential minerals, besides the accessories amphibole, biotite, sphene and magnetite. It is metaluminous and shows characteristics transitional between the calc-alkaline and alkaline series (or monzonitic subalkaline). Its REE content is greater than those ones of the Caxexa Pluton and biotite microgranite, and all spectra have negative europium anomalies. The biotite microgranites occur mainly on the central and eastern portion of the mapped area, as dykes and sheets with decimetric thickness, hosted principally in orthogneisses and micashists. Their field relationships as regards the Caxexa and Cabeçudo plutons suggested that they are late-tectonic intrusions. They are typically biotite granites, having also sphene, amphibole, allanite, opaques and zircon in the accessory assemblage. Geochemically they can be distinguished from the porphyritic types because the biotite microgranites are more evolved, peraluminous, and have more fractionated REE spectra. The Basic to Intermediate rocks form a volumetrically expressive elliptical, kilometric scale body on the Southeast, as well as sheets in micashists. They are classified as gabbronorites to monzonites, with the two pyroxenes and biotite, besides subordinated amounts of amphibole, sphene, ilmenite and allanite. These rocks do not show a well-defined geochemical trend, however they may possibly represent a monzonitic (shoshonitic) series. Their REE spectra have negative europium anomalies and REE contents greater than the other suites. The aluminous granitoids are volumetrically restricted, and have been observed in close association with migmatised micashists bordering the gabbronorite pluton. They are composed of almandine-rich garnet, andalusite, biotite and muscovite, and are akin to the peraluminous suites. Rb-Sr (whole rock) and Sm-Nd (whole-rock and mineral) isotopes furnished a minimum estimate of the crystallization (578±14 Ma) and the final resetting age of the Rb-Sr system (536±4 Ma) in the Caxexa Pluton. The aluminous granitoid has a Sm-Nd garnet age similar to that one of the Caxexa Pluton, that is 574±67 Ma. The strong interaction of shear bands and pegmatite dykes favoured the opening of the Rb-Sr system for the Caxexa Pluton and biotite microgranite. The amphibole-plagioclase geothermometer and the Al-in amphibole geobarometer indicate minimum conditions of 560°C and 7 kbar for the Cabeçudo Pluton, 730°C and 6 kbar for the microgranite and 743°C and 5 kbar for the basic to intermediate suite. The Zr saturation geothermometer reveals temperatures of respectively 855°C, 812°C and 957°C for those suites, whereas the Caxexa Pluton shows temperatures of around 757°C. The Caxexa, Cabeçudo and microgranites suites crystallized under high fO2 (presence of magnetite). On the other hand, the occurrence of ilmenite suggests less oxidant conditions in the basic to intermediate suite. Field relations demonstrate the intrusive character of the granitoids into a tectonically relatively stable continental crust. This is corroborated by petrographic and geochemical data, which suggest a late- or post-collisional tectonic context. It follows that the generation and emplacement of those granitoid suites is related to the latest events of the Brasiliano orogeny. Finally, the relationships between eNd (600 Ma), TDM (Nd) and initial Sr isotope ratio (ISr) do not permit to define the precise sources of the granitoids. Nevertheless, trace element modelling and isotopic comparisons suggest the participation of the metasomatised mantle in the generation of these suites, probably modified by different degrees of crustal contamination. In this way, a metasomatised mantle would not be a particular characteristic of the Neoproterozoic lithosphere, but a remarkable feature of this portion of the Borborema Province since Archaean and Paleoproterozoic times.