31 resultados para Turbinas a vapor

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel cementing materials formulations containing flexible polymeric admixtures have been studied aiming at improving the mechanical behavior of oil well cement slurries submitted to steam injection. However, research activities in this sector are still under development. The steam injected directly into the well causes casing dilation, which after a reduction in temperature, tends to return to its original dimensions, resulting in crack formation and hydraulic isolation loss of the well, which will result in shortening of well life. In this scenario, the objective of the present study was to evaluate the mechanical behavior of Portland-based slurries containing SBR latex, applied in oil well cementing of wells submitted to steam injection. Were formulated slurries with densities of 1.797 g/cm3 (15.0 lb/Gal) and 1.869 g/cm3 (15.6 lb/Gal), containing admixtures with a latex concentration of 0; 66.88; 133.76; 200.64 and 267.52 L/m3 (0, 0.5, 1.0, 1.5 and 2.0 gpc). Tests including rheology, fluid loss control, thickening time, API compressive strength and splitting tensile strength, beyond steam injection simulation. Microstrutural characteristics of the slurries were also performed (XRD, TG, FTIR and SEM). The results showed that increasing the polymer concentration increased in the rheological properties and fluid loss, and a decrease in the elasticity modulus of the cement slurries. The results obtained showed that the slurries can be applied in cementing operations of oil wells submitted to steam injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic oxides with ABO3 structure, where A represents a rare earth element or an alkaline metal and B is a transition metal from group VIII of the periodic table are potential catalysts for oxidation and good candidates for steam reforming reaction. Different methods have been considered for the synthesis of the oxide materials with perovskite structure to produce a high homogeneous material with low amount of impurities and low calcination temperatures. In the current work, oxides with the LaNiO3 formula had been synthesized using the method of the polymeric precursors. The thermal treatment of the materials took place at 300 ºC for 2h. The material supported in alumina and/or zirconia was calcined at 800 ºC temperature for 4h. The samples had been characterized by the following techniques: thermogravimetry; infrared spectroscopy; X-ray diffraction; specific surface area; distribution of particle size; scanning electron microscopy and thermo-programmed reduction. The steam reforming reaction was carried out in a pilot plant using reducing atmosphere in the reactor with a mixture of 10% H2-Argon, a mass about 5g of catalyst, flowing at 50 mL.min-1. The temperature range used was 50 - 1000 oC with a heating rate of 10 oC.min-1. A thermal conductivity detector was used to analyze the gas after the water trapping, in order to permit to quantify the consumption of hydrogen for the lanthanum nickelates (LaNiO3). The results showed that lanthanum nickelate were more efficient when supported in alumina than when supported in zirconia. It was observed that the methane conversion was approximately 100% and the selectivity to hydrogen was about 70%. In all cases were verified low selectivity to CO and CO2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam injection is the most used method of additional recovery for the extraction of heavy oil. In this type procedure is common to happen gravitational segregation and this phenomenon can affect the production of oil and therefore, it shoulds be considered in the projects of continuous steam injection. For many years, the gravitational segregation was not adequately considered in the calculation procedures in Reservoir Engineering. The effect of the gravity causes the segregation of fluids inside the porous media according to their densities. The results of simulation arising from reservoirs could provide the ability to deal with the gravity, and it became apparent that the effects of the gravity could significantly affect the performance of the reservoir. It know that the gravitational segregation can happen in almost every case where there is injection of light fluid, specially the steam, and occurs with greater intensity for viscous oil reservoirs. This work discusses the influence of some parameters of the rock-reservoir in segregation as viscosity, permeability, thickness, cover gas, porosity. From a model that shows the phenomenon with greater intensity, optimized some operational parameters as the rate flow rate steam, distance between the wells injector-producer, and interval of completion which contributed to the reduction in gravity override, thus increasing the oil recovery. It was shown a greater technical-economic viability for the model of distance between the wells 100 m. The analysis was performed using the simulator of CMG (Computer Modeling Group-Stars 2007.11, in which was observed by iterating between studied variables in heavy oil reservoirs with similar characteristics to Brazilian Northeast

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently a resource more and more used by the petroleum industry to increase the efficiency of steam flood mechanism is the addition of solvents. The process can be understood as a combination of a thermal method (steam injection) with a miscible method (solvent injection), promoting, thus, the reduction of interfacial tensions and oil viscosity. The use of solvent alone tends to be limited because of its high cost. When co-injected with steam, the vaporized solvent condenses in the cooler regions of the reservoir and mixes with the oil, creating a zone of low viscosity between the steam and the heavy oil. The mobility of the displaced fluid is then improved, resulting in an increase of oil recovery. To better understand this improved oil recovery method, a numerical study of the process was done contemplating the effects of some operational parameters (distance between wells, injection steam rate, kind of solvent and injected solvent volume)on the accumulated production of oil, recovery factor and oil-steam rate. Semisynthetic models were used in this study but reservoir data can be extrapolated for practical applications situations on Potiguar Basin. Simulations were performed in STARS (CMG, 2007.11). It was found that injected solvent volumes increased oil recovery and oil rates. Further the majority of the injected solvent was produced and can be recycled

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploration of heavy oil reservoirs is increasing every year in worldwide, because the discovery of light oil reservoirs is becoming increasingly rare. This fact has stimulated the research with the purpose of becoming viable, technically and economically, the exploration of such oil reserves. In Brazil, in special in the Northeast region, there is a large amount of heavy oil reservoir, where the recovery by the so called secondary methods Water injection or gas injection is inefficient or even impracticable in some reservoirs with high viscosity oils (heavy oils). In this scenario, steam injection appears as an interesting alternative for recover of these kinds of oil reservoirs. Its main mechanism consists of oil viscosity reduction through steam injection, increasing reservoir temperature. This work presents a parametric simulation study of some operational and reservoir variables that had influence on oil recovery in thin reservoirs typically found in Brazilian Northeast Basins, that use the steam injection as improved oil recovery method. To carry out simulations, it was used the commercial software STARS (Steam, Thermal, and Advanced Processes Reservoir Simulator) from CMG (Computer Modeling Group) version 2007.11. Reservoirs variables studied were horizontal permeability, vertical and horizontal permeability ratio, water zone and pay zone thickness ratio, pay zone thickness and thermal conductivity of the rock. Whereas, operational parameters studied were distance between wells and steam injection rate. Results showed that reservoir variables that had more influence on oil recovery were horizontal permeability and water zone and pay zone thickness ratio. In relation to operational variables, results showed that short distances between wells and low steam injection rates improved oil recovery

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, due to part of world is focalized to petroleum, many researches with this theme have been advanced to make possible the production into reservoirs which were classified as unviable. Because of geological and operational challenges presented to oil recovery, more and more efficient methods which are economically successful have been searched. In this background, steam flood is in evidence mainly when it is combined with other procedures to purpose low costs and high recovery factors. This work utilized nitrogen as an alternative fluid after steam flood to adjust the best combination of alternation between these fluids in terms of time and rate injection. To describe the simplified economic profile, many analysis based on liquid cumulative production were performed. The completion interval and injection fluid rates were fixed and the oil viscosity was ranged at 300 cP, 1.000 cP and 3.000 cP. The results defined, for each viscosity, one specific model indicating the best period to stop the introduction of steam and insertion of nitrogen, when the first injected fluid reached its economic limit. Simulations in physics model defined from one-eighth nine-spot inverted were realized using the commercial simulator Steam, Thermal and Advanced Processes Reservoir Simulator STARS of Computer Modelling Group CMG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to reservoirs complexity and significantly large reserves, heavy oil recovery has become one of the major oil industry challenges. Thus, thermal methods have been widely used as a strategic method to improve heavy oil recovery. These methods improve oil displacement through viscosity reduction, enabling oil production in fields which are not considered commercial by conventional recovery methods. Among the thermal processes, steam flooding is the most used today. One consequence in this process is gravity segregation, given by difference between reservoir and injected fluids density. This phenomenon may be influenced by the presence of reservoir heterogeneities. Since most of the studies are carried out in homogeneous reservoirs, more detailed studies of heterogeneities effects in the reservoirs during steam flooding are necessary, since most oil reservoirs are heterogeneous. This paper presents a study of reservoir heterogeneities and their influence in gravity segregation during steam flooding process. In this study some heterogeneous reservoirs with physical characteristics similar those found in the Brazilian Northeast Basin were analyzed. To carry out the simulations, it was used the commercial simulator STARS by CMG (Computer Modeling Group) - version 2007.11. Heterogeneities were modeled with lower permeability layers. Results showed that the presence of low permeability barriers can improve the oil recovery, and reduce the effects of gravity segregation, depending on the location of heterogeneities. The presence of these barriers have also increased the recovered fraction even with the reduction of injected steam rate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous steam injection is one of heavy oil thermal recovery methods used in the Brazilian Northeast because of high occurrence of heavy oil reservoir. In this process, the oil into the reservoir is heated while reduces, substantially, its viscosity and improves the production. This work analyzed how the shaly sand layers influenced in the recovery. The studied models were synthetics, but the used reservoir data can be extrapolated to real situations of Potiguar Basin. The modeling was executed using the STARS - Steam Thermal and Advanced Process Reservoir Simulator - whose version was 2007.10. STARS is a tool of CMG Computer Modeling Group. The study was conducted in two stages, the first we analyzed the influence of reservoir parameters in the thermal process, so some of these were studied, including: horizontal permeability of the reservoir and the layer of shaly sand, ratio of horizontal permeability to vertical permeability, the influence of capillary pressure layer of shaly sand and as the location and dimensions of this heterogeneity can affect the productivity of oil. Among the parameters studied the horizontal permeability of the reservoir showed the most significant influence on the process followed by diversity. In the second stage three models were selected and studied some operational parameters such as injection rate, distance between wells, production time and completion intervals. Among the operating parameters studied the low rate and intermediate distances between wells showed the best recoveries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steam injection is the most used thermal recovery method of oil nowadays because of the high degree of development of the technique that allows high recovery factors. However, injection of superheated steam into the reservoir affects the entire structure of the well, including the cemented layer that presents a retrogression of compressive strength and increases the permeability due to formation of more crystalline and denser phases at temperatures above 110 °C. These changes result in failures in the cement that favor the entrance of formation fluids into the annulus space resulting in unsafe operations and restrictions in the economic life of the well. But the strength retrogression can be prevented by partial replacement of cement by silica-based materials that reduce the CaO/SiO2 ratio of cement slurries changing the trajectory of the reactions, converting those deleterious phases in phases with satisfactory mechanical strength and permeability. The aim of this study was to evaluate the behavior of a ceramic waste material rich in silica in partial and total substitution of a mineral additive used to fight the strength retrogression of cement slurries subjected to high temperatures. The evaluation was made by compression, X-ray diffraction (XRD) and thermogravimetry (TG/DTG). The samples were submitted to a cycle of low temperature (38 °C) for 28 days and a cycle of low temperature followed by exposure to 280 ºC and 1000 psi by 3 days. The results showed that slurries with additions of up to 30% of the waste material are not enough to prevent the strength retrogression, while slurries with additions of the waste material combined with silica flour in various proportions produced hydrated products of low Ca/Si ratios that maintained the compressive strength at satisfactory levels

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of heavy oil fields, typical in the Northeastern region, is commonly stimulated by steam injection. High bottom hole temperatures are responsible not only for the development of deleterious stresses of the cement sheath but also for cement strength retrogression. To overcome this unfavorable scenario, polymeric admixtures can be added to cement slurries to improve its fracture energy and silica flour to prevent strength retrogression. Therefore, the objective of the present study was to investigate the effect of the addition of different concentrations of polyurethane (5-25%) to cement slurries containing 40% BWOC silica flour. The resulting slurries were characterized using standard API (American Petroleum Institute) laboratory tests. In addition to them, the mechanical properties of the slurries, including elastic modulus and microhardness were also evaluated. The results revealed that density, free water and stability of the composite cement/silica/polyurethane slurries were within acceptable limits. The rheological behavior of the slurries, including plastic viscosity, yield strength and gel strength increased with the addition of 10% BWOC polyurethane. The presence of polyurethane reduced the fluid loss of the slurries as well as their elastic modulus. Composite slurries also depicted longer setting times due to the presence of the polymer. As expected, both the mechanical strength and microhardness of the slurries decreased with the addition of polyurethane. However, at high bottom hole temperatures, the strength of the slurries containing silica and polyurethane was far superior than that of plain cement slurries. In summary, the use of polyurethane combined with silica is an interesting solution to better adequate the mechanical behavior of cement slurries to heavy oil fields subjected to steam injection

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazilian Northeast there are reservoirs with heavy oil, which use steam flooding as a recovery method. This process allows to reduce oil viscosity, increasing its mobility and consequently its oil recovery. Steam injection is a thermal method and can occurs in continues or cyclic form. Cyclic steam stimulation (CSS) can be repeated several times. Each cycle consisting of three stages: steam injection, soaking time and production phase. CSS becomes less efficient with an increase of number of cycles. Thus, this work aims to study the influence of compositional models in cyclic steam injection and the effects of some parameters, such like: flow injection, steam quality and temperature of steam injected, analyzing the influence of pseudocomponents numbers on oil rate, cumulative oil, oil recovery and simulation time. In the situations analyzed was compared the model of fluid of three phases and three components known as Blackoil . Simulations were done using commercial software (CMG), it was analyzed a homogeneous reservoir with characteristics similar to those found in Brazilian Northeast. It was observed that an increase of components number, increase the time spent in simulation. As for analyzed parameters, it appears that the steam rate, and steam quality has influence on cumulative oil and oil recovery. The number of components did not a lot influenced on oil recovery, however it has influenced on gas production

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oil companies in the area in general are looking for new technologies that can increase the recovery factor of oil contained in reservoirs. These investments are mainly aimed at reducing the costs of projects which are high. Steam injection is one of these special methods of recovery in which steam is injected into the reservoir in order to reduce the viscosity of the oil and make it more mobile. The process assisted gravity drainage steam (SAGD) using steam injection in its mechanism, as well as two parallel horizontal wells. In this process steam is injected through the horizontal injection well, then a vapor chamber is formed by heating the oil in the reservoir and, by the action of gravitational forces, this oil is drained down to where the production well. This study aims to analyze the influence of pressure drop and heat along the injection well in the SAGD process. Numerical simulations were performed using the thermal simulator STARS of CMG (Computer Modeling Group). The parameters studied were the thermal conductivity of the formation, the flow of steam injection, the inner diameter of the column, the steam quality and temperature. A factorial design was used to verify the influence of the parameters studied in the recovery factor. We also analyzed different injection flow rates for the model with pressure drop and no pressure drop, as well as different maximum flow rates of oil production. Finally, we performed an economic analysis of the two models in order to check the profitability of the projects studied. The results showed that the pressure drop in injection well have a significant influence on the SAGD process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the thermal recovery is to heat the resevoir and the oil in it to increase its recovery. In the Potiguar river basin there are located several heavy oil reservoirs whose primary recovery energy provides us with a little oil flow, which makes these reservoirs great candidates for application of a method of recovery advanced of the oil, especially the thermal. The steam injection can occur on a cyclical or continuous manner. The continuous steam injection occurs through injection wells, which in its vicinity form a zone of steam that expands itself, having as a consequence the displace of the oil with viscosity and mobility improved towards the producing wells. Another possible mechanism of displacement of oil in reservoirs subjected to continuous injection of steam is the distillation of oil by steam, which at high temperatures; their lighter fractions can be vaporized by changing the composition of the oil produced, of the oil residual or to shatter in the amount of oil produced. In this context, this paper aims to study the influence of compositional models in the continuous injection of steam through in the analysis of some parameters such as flow injection steam and temperature of injection. Were made various leading comparative analysis taking the various models of fluid, varying from a good elementary, with 03 pseudocomponents to a modeling of fluids with increasing numbers of pseudocomponents. A commercial numerical simulator was used for the study from a homogeneous reservoir model with similar features to those found in northeastern Brazil. Some conclusions as the increasing of the simulation time with increasing number of pseudocomponents, the significant influence of flow injection on cumulative production of oil and little influence of the number of pseudocomponents in the flows and cumulative production of oil were found

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Como os recursos de hidrocarbonetos convencionais estão se esgotando, a crescente demanda mundial por energia impulsiona a indústria do petróleo para desenvolver mais reservatórios não convencionais. Os recursos mundiais de betume e óleo pesado são estimados em 5,6 trilhões de barris, dos quais 80% estão localizados na Venezuela, Canadá e EUA. Um dos métodos para explorar estes hidrocarbonetos é o processo de drenagem gravitacional assistido com injeção de vapor e solvente (ES-SAGD Expanding Solvent Steam Assisted Gravity Drainage). Neste processo são utilizados dois poços horizontais paralelos e situados verticalmente um acima do outro, um produtor na base do reservatório e um injetor de vapor e solvente no topo do reservatório. Este processo é composto por um método térmico (injeção de vapor) e um método miscível (injeção de solvente) com a finalidade de causar a redução das tensões interfaciais e da viscosidade do óleo ou betume. O objetivo deste estudo é analisar a sensibilidade de alguns parâmetros operacionais, tais como: tipo de solvente injetado, qualidade do vapor, distância vertical entre os poços, porcentagem de solvente injetado e vazão de injeção de vapor sobre o fator de recuperação para 5, 10 e 15 anos. Os estudos foram realizados através de simulações concretizadas no módulo STARS (Steam Thermal, and Advanced Processes Reservoir Simulator) do programa da CMG (Computer Modelling Group), versão 2010.10, onde as interações entre os parâmetros operacionais, estudados em um modelo homogêneo com características de reservatórios semelhantes aos encontrados no Nordeste Brasileiro, foram observadas. Os resultados obtidos neste estudo mostraram que os melhores fatores de recuperação ocorreram para níveis máximos do percentual de solvente injetado e da distância vertical entre os poços. Observou-se também que o processo será rentável dependendo do tipo e do valor do solvente injetado