2 resultados para Thin Film Solar Cells
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This study will show the capability of the reactive/nonreactive sputtering (dc/rf) technique at low power for the growth of nanometric thin films from magnetic materials (FeN) and widegap semiconductors (AlN), as well as the technological application of the Peltier effect using commercial modules of bismuth telluride (Bi2Te3). Of great technological interest to the high-density magnetic recording industry, the FeN system represents one of the most important magnetic achievements; however, diversity of the phases formed makes it difficult to control its magnetic properties during production of devices. We investigated the variation in these properties using ferromagnetic resonance, MOKE and atomic force microscopy (AFM), as a function of nitrogen concentration in the reactive gas mixture. Aluminum nitride, a component of widegap semiconductors and of considerable interest to the electronic and optoelectronic industry, was grown on nanometric thin film for the first time, with good structural quality by non-reactive rf sputtering of a pure AlN target at low power (≈ 50W). Another finding in this study is that a long deposition time for this material may lead to film contamination by materials adsorbed into deposition chamber walls. Energy-dispersive X-ray (EDX) analysis shows that the presence of magnetic contaminants from previous depositions results in grown AlN semiconductor films exhibiting magnetoresistance with high resistivity. The Peltier effect applied to commercially available compact refrigeration cells, which are efficient for cooling small volumes, was used to manufacture a technologically innovative refrigerated mini wine cooler, for which a patent was duly registered
Resumo:
Solar energy presents itself as an excellent alternative for the generation of clean, renewable energy. This work aims to identify technological trends of photovoltaic cells for solar energy. The research is characterized, in relation to nature, to be applied; regarding the approach is qualitative and quantitative; with respect to the objectives, it is exploratory and descriptive; concerning the methodological procedure is considered a bibliographic research with a case study in the case of solar photovoltaic sector. The development of this research began with a literature review on photovoltaic solar energy and technology foresight. Then it led to the technology mapping of photovoltaic solar cells through the analysis of articles and patents. It was later performed the technological prospecting of photovoltaic cells for solar energy through the Delphi method, as well as the construction of the current plan and future technology of photovoltaic cells for the current scenario, 2020 and 2025. The results of this research show that the considered mature technologies (silicon mono and multicrystalline) will continue to be commercially viable within the prospected period (2020-2025). Other technologies that are currently viable (amorphous silicon, cadmium telluride and copper indium selenide / Copper indium gallium diselenide-), may not submit the same condition in 2025. Since the cells of silicon nanowires, dye-sensitized and based on carbon nanostructure, which nowadays are not commercially viable, may be part of the future map of photovoltaic technologies for solar energy.