7 resultados para Thermal efficiency

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It s presented a solar collector to be used in a system for heating bath water, whose main characteristic is its low cost. The collector consists of five plates of PVC with 10 mm thick, 200 mm in width and 1400mm in length, with an area equal to 1.4 square meters. The plates were connected in parallel to the ends of PVC tubes of  40 mm and 32 mm. The plates were coated on one side with aluminum sheets of soft drinks and beers cans open. The system worked on a thermosiphon and was tested in two configurations: the plates uncoated and coated with aluminum material, to determine the influence of material on the efficiency of the collector. For both configurations was used EPS plates below the surface to minimize heat losses from the botton. The thermal reservoir of the heating system is, also, alternative and low cost, since it was constructed from a polyethylene tank for storing water, with volume of 150 end 200 liters. It will be presented the thermal efficiency, heat loss, water temperature of the thermal reservoir at the end of the process and simulation of baths for a house with four residents. The will be demonstrated thermal, economic and material viability of the proposed collector, whose main innovation is the use of recyclables materials, cans of beer and soft drinks, to increase the temperature of the absorber plate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied the feasibility of using a system of Solar Water Heating (SAS) with low cost, for three configurations. In configurations I and II have the collector grid absorber composed of six PVC tubes placed in parallel on the tile cement. In configuration II, the PVC tubes were transparent cover made of plastic bottles. Configuration III uses a collector composed of 12 black HDPE pipes, supported on four cement tiles 2.44 m x 0.50 m, two by two overlapping and interspersed with a filling of glass wool, comprising an area exposed to the global radiation incident of 2.44 m2, with the top two tiles painted matte black. In this configuration, the HDPE pipes replace conventional PVC pipes painted black. The total cost of SAS for configuration III, the most economical, was around $ 150.00. For the configurations tested the system of operation was thermosyphon collector. The study showed that the proposed systems have good thermal efficiency, are easy to install and handle and have low cost compared to conventional.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It was studied a system for heating water to be used to obtain water for bathing at home, the absorbing surface of the collector is formed by one plate of polycarbonate. The polycarbonate plate has 6 mm thick, 1.050 mm wide and 1.500 mm long with an area equal to 1,575 m². The plate was attached by its edges parallel to PVC tubes of 32 mm. The system worked under the thermo-siphon and was tested for two configurations: plate absorber with and without isolation of EPS of 30 mm thick on the bottom surface in order to minimize heat losses from the bottom. The tank's thermal heating system is alternative and low cost, since it was constructed from a polyethylene reservoir for water storage, with a volume of 200 liters. Will present data on the thermal efficiency, heat loss, water temperature of thermal reservoir at the end of the process simulation and baths. Will be demonstrated the feasibility of thermal, economic and material pickup proposed for the intended purpose.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The scarcity of farmland, reducing the supply of irrigation water and lack of technologies for conservation, makes the globalized world facing serious difficulties in the production of food for its population. The most viable outlet for this dilemma is the dissemination of technologies, economically viable and available to the whole population, for dehydration of perishable foods produced. This paper presents a solar dryer of direct exposure to the production of dried fruit, made from recycled polyethylene drum of 200 liters, used for storing water or trash. The drum was sectioned in half in its longitudinal axis and has its halves together forming a trough-like structure. It describes the processes of construction and assembly of solar dryer proposed, whose main characteristic its low cost, and was designed for use by people with low income, for processing fruits widely available in our region (mango, banana, guava, cashew, pineapple, tomato and others) in dried fruit and flour, contributing significantly to increase the life of these foods. The nuts and flours can be used for own consumption and for marketing jobs and income generation. Tests were conducted to diagnose the feasibility of using solar dryer for the various types of tropical fruits. Were also compared parameters such as drying times and thermal efficiency obtained with the prototype found in the specialized literature in food dehydration. The drying times in the dryer were obtained competitive with those obtained in other models of dryers LMHES developed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work has as objective the knowledge of the process of drying of the cephalothorax of shrimp to give support the industry to make possible the use of this byproduct. In this sense, the process conditions in this tray dryer and spouted bed were analyzed. With these results, it was projected and constructs a dryer with specific characteristics for the drying of the cephalothorax. The desorption isotherms were obtained by the dynamic method in the temperatures of 20, 35 and 50º C and in the interval of 10-90% of relative humidity. It was observed that the product in form of powder can be conserved with larger stability for lower relative humidity to 40%. The curves of drying of the dryer of fixed bed were adjusted for the models: single exponential, biparametric exponential and Page. The model biparametric exponential more adequately described all the drying conditions studied. The tests carry out in spouted bed showed high drying rate for the material in the paste form in beds active dynamicly-fluid, provely the necessity of a feeding in shorter intervals of time to increase the thermal efficiency of the process. The projected dryer, be considered the obtained results, it was a rotary dryer with inert bed, feed co-current, discharge in cyclone to take place the separation gas-solid, and feed carry out in intervals of 2 minutes. The optimization of the equipment projected it was accomplished used the complete factorial experimental design 24, this had as independent variables temperature velocity of the air, feed flow rate and encapsulated concentration (albumin), as variables answers the thermal efficiency, the moisture content of obtained powder, total time of test and the efficiency of production of powder in several points of processing. The results showed that the rotary dryer with inert bed can present, also, good results if applied industrially

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The soursop (A. muricata) is a fruit rich in minerals especially the potassium content. The commercialization of soursop in natura and processed has increased greatly in recent years. Drying fruit pulp in order to obtain the powdered pulp has been studied, seeking alternatives to ensure the quality of dehydrated products at a low cost of production. The high concentration of sugars reducing present in fruits causes problems of agglomeration and retention during fruit pulp drying in spouted bed dryers. On the other hand in relation to drying of milk and fruit pulp with added milk in spouted bed, promising results are reported in the literature. Based on these results was studied in this work drying of the pulp soursop with added milk in spouted bed with inert particles. The tests were based on a 24 factorial design were evaluated for the effects of milk concentration (30 to 50% m/m), drying air temperature (70 to 90 °C), intermittency time (10 to 14 min), and ratio of air velocity in relation to the minimum spout (1.2 to 1.5) on the rate of production, of powder moisture, yield, rate of drying and thermal efficiency of the process. There were physical and chemical analysis of mixtures, of powders and of mixtures reconstituted by rehydration powders. Were adjusted statistical models of first order to data the rate of production, yield and thermal efficiency, that were statistically significant and predictive. An efficiency greater than 40% under the conditions of 50% milk mixture, at 70 ° C the drying air temperature and 1.5 for the ratio between the air velocity and the minimum spout has been reached. The intermittency time showed no significant effect on the analyzed variables. The final product had moisture in the range of 4.18% to 9.99% and water activity between 0.274 to 0.375. The mixtures reconstituted by rehydration powders maintained the same characteristics of natural blends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Actually, Brazil is one of the larger fruit producer worldwide, with most of its production being consumed in nature way or either as juice or pulp. It is important to highlig ht in the fruit productive chain there are a lot lose due mainly to climate reasons, as well as storage, transportation, season, market, etc. It is known that in the pulp and fruit processing industy a yield of 50% (in mass) is usually obtained, with the other part discarded as waste. However, since most this waste has a high nutrient content it can be used to generate added - value products. In this case, drying plays an important role as an alternative process in order to improve these wastes generated by the fruit industry. However, despite the advantage of using this technique in order to improve such wastes, issues as a higher power demand as well as the thermal efficiency limitation should be addressed. Therefore, the control of the main variables in t his drying process is quite important in order to obtain operational conditions to produce a final product with the target specification as well as with a lower power cost. M athematical models can be applied to this process as a tool in order to optimize t he best conditions. The main aim of this work was to evaluate the drying behaviour of a guava industrial pulp waste using a batch system with a convective - tray dryer both experimentally and using mathematical modeling. In the experimental study , the dryin g carried out using a group of trays as well as the power consume were assayed as response to the effects of operational conditions (temperature, drying air flow rate and solid mass). Obtained results allowed observing the most significant variables in the process. On the other hand, the phenomenological mathematical model was validated and allowed to follow the moisture profile as well as the temperature in the solid and gas phases in every tray. Simulation results showed the most favorable procedure to o btain the minimum processing time as well as the lower power demand.