2 resultados para Thermal Response Model
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Protozoa may be an important alternative food source for Calanoida copepods in these environments. Aiming to quantify the feeding preferences of N. cearensis by ciliates in the presence of cyanobacteria, in vitro experiments were conducted, using mixed cultures in different concentrations of total food for copepod. Two ciliates species (Paramecium sp. and Cyclidium sp.) and a cyanobacteria toxic strain (Microcystis aeruginosa) were offered as food. Previous experiments were done to identify the copepod s maximum ingestion rate through the use of a type II functional response model when each prey is offered separately. High maximum ingestion rate were found when those protists were offered as prey. N. cearensis showed significant preference for protozoal prey over the cyanobacterium tested both in low (corresponding 95.15% of the diet) and in high food concentration treatments (about 91.56% of the diet), preferring the bigger ciliate in lower concentrations (67.52% of the diet). The meaningful involvement of heterotrophic organisms in the zooplankton diet emphasis the microbial loop participation in the energy transition from copepods to higher trophic levels. This data contributes to understand the stability of existing trophic interactions in reservoirs subjected to eutrophication and assists trophic cascade studies in these environments
Resumo:
Wear mechanisms and thermal history of two non-conforming sliding surfaces was investigated in laboratory. A micro-abrasion testing setup was used but the traditional rotative sphere method was substituted by a cylindrical surface of revolution which included seven sharp angles varying between 15o to 180o. The micro-abrasion tests lead to the investigation on the polyurethane response at different contact pressures. For these turned counterfaces with and without heat treatment. Normal load and sliding speeds were changed. The sliding distance was fixed at 5 km in each test. The room and contact temperatures were measured during the tests. The polyurethane was characterized using tensile testing, hardness Shore A measurement, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Thermomechanical Analyze (TMA). The Vickers micro-hardness of the steel was measured before and after the heat treatment and the metallographic characterization was also carried out. Worn surface of polyurethane was analysed using Scanning Electron Microscope (SEM) and EDS (Electron Diffraction Scanning) microanalyses. Single pass scratch testing in polyurethane using indenters with different contact angles was also carried out. The scar morphology of the wear, the wear mechanism and the thermal response were analyzed in order to correlate the conditions imposed by the pressure-velocity pair to the materials in contact. Eight different wear mechanisms were identified on the polyurethane surface. It was found correlation between the temperature variation and the wear scar morphology.