18 resultados para Thermal Properties

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although already to exist alternative technique and economically viable for destination of used tires, quantitative data on properties of constructive elements that use the rubber waste as aggregate still are restricted. In the present work, the waste proceeding from industry of retreading as material for manufacture of composite destined to the production of constructive elements was considered. Mechanical and thermal properties of mortar had been analyzed Portland cement with addition of waste without treatment, in the ratios of 10%, 20% and 30% in mass in relation to the mass of the cement, substituting the aggregate in the trace in mortar 1:5 mass cement and sand. The size of the used residue varied between 0,30mm and 4,8mm (passing in the bolter 4,8mm and being restrained in the one of 0,30mm), being it in the formats fibers and granular. The influences of the size and the percentage of residue added to the mortar (in substitution to the aggregate) in the thermal and mechanical properties had been considered. Assays of body-of-test in thestates had been become fullfilled cool (consistency index) and hardened (absorption of water for capillarity, strength the compression, traction and strength flexural). The work is centralized in the problem of the relation thermal performance /strength mechanics of used constructive systems in regions of low latitudes (Been of the Piauí), characterized for raised indices of solar radiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growing concern with the solid residues management, observed in the last decade, due to its huge amount and impact, has motivated the search for recycling processes, where these residues can be reprocessed to generate new products, enlarging the cycle of materials and energy which are present. Among the polymeric residues, there is poly (ethylene terephthalate) (PET). PET is used in food packaging, preferably in the bottling of carbonated beverages. The reintegration of post-consumer PET in half can be considered a productive action mitigation of environmental impacts caused by these wastes and it is done through the preparation of several different products at the origin, i.e. food packaging, with recycling rates increasing to each year. This work focused on the development and characterization mechanical, thermal, thermo-mechanical, dynamic mechanical thermal and morphology of the pure recycled PET and recycled PET composites with glass flakes in the weight fraction of 5%, 10% and 20% processed in a single screw extruder, using the following analytical techniques: thermogravimetry (TG), differential scanning calorimetry (DSC), tensile, Izod impact, Rockwell hardness, Vicat softening temperature, melt flow rate, burn rate, dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). The results of thermal analysis and mechanical properties leading to a positive evaluation, because in the thermograms the addition of glass flakes showed increasing behavior in the initial temperatures of thermal decomposition and melting crystalline, Furthermore was observed growing behavior in the mechanical performance of polymer composites, whose morphological structure was observed by SEM, verifying a good distribution of glass flakes, showing difference orientation in the center and in the surface layer of test body of composites with 10 and 20% of glass flakes. The results of DMTA Tg values of the composites obtained from the peak of tan ä showed little reductions due to poor interfacial adhesion between PET and recycled glass flakes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The advantage in using vegetable fibres in place of synthetic fibres such as glass fibre, for reinforcements in composites are: biodegradability, low cost, low density, good tenacity, good thermal properties, low energy content and reduced use of instruments for its treatment or processing. Even though, problems related to low mechanical performance of some of the natural fibres, has caused difficulty in their direct application in structural elements. The use of alternative materials like hybrid composites has been encouraged, thus trying to better the structural performance of the composites with natural fibres. This work presents a comparative study of the strength and stiffness of hybrid composites with orthopthalic polyester matrix reinforced with E-fibre glass, jute and curauá. The experimental part includes uniaxial tension and three point bending tests to determine the mechanical properties of the final product. The hybrid composite was manufactured in a local industry and was in the form of laminates. All the samples were projected to withstand the possible structural applications as reservoirs and pipes. CH (laminated hybrid composite with glass and curauá fibres). The results obtained show clearly the influence of the hybridization in all the types tested and indicate a good mechanical performance of the composite with glass/curauá fibres in relation to the composite with glass fibres. Aspects in relation to the interfaces glass/curauá composites besides the fracture characteristics for all loading types were also analysed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The advantages of the use of vegetable fibers on the synthetic fibers, such as glass fibers, in the reinforcements in composites are: low cost, low density, good tenacity, good thermal properties and reduced use of instruments for their treatment or processing. However, problems related to poor performance of some mechanical natural fibers, have hindered its direct use in structural elements. In this sense, the emergence of alternative materials such as hybrids composites, involving natural and synthetic fibers, has been encouraged by seeking to improve the performance of structural composites based only on natural fibers. The differences between the physical, chemical and mechanical properties of these fibers, especially facing the adverse environmental conditions such as the presence of moisture and ultraviolet radiation, is also becoming a concern in the final response of these composites. This piece of research presents a comparative study of the strength and stiffness between two composite, both of ortoftalic polyester matrix, one reinforced with fibers of glass-E (CV) and other hybrid reinforced with natural fibers of curauá and fiberglass-E (CH). All the comparative study is based on the influence of exposure to UV rays and steam heated water in composites, simulating the aging environment. The conditions for the tests are accelerated through the use of the aging chamber. The composites will be evaluated through tests of uniaxial static mechanical traction and bending on three points. The composite of glass fiber and hybrid manufacturing industry are using the rolling manual (hand lay-up) and have been developed in the form of composites. All were designed to meet possible structural applications such as tanks and pipes. The reinforcements used in composites were in the forms of short fiber glass-E quilts (450g/m2 - 5cm) of continuous wires and fuses (whose title was of 0.9 dtex) for the curauá fibers. The results clearly show the influence of aging on the environmental mechanical performance of the composite CV and CH. The issues concerning the final characteristics of the fracture for all types of cargoes studied were also analyzed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decades there was a concentrate effort of researchers in the search for options to the problem of the continuity of city development and environmental preservation. The recycling and reuse of materials in industry have been considerate as the best option to sustainable development. One of the relevant aspects in this case refers to the rational use of electrical energy. At this point, the role of engineering is to conceive new processes and materials, with the objective of reducing energy consumption and maintaining, at the same time the benefits of the technology. In this context, the objective of the present research is to analyze quantitatively the thermal behavior of walls constructed with concrete blocks which composition aggregates the expanded polystyrene (EPS) reused in the shape of flakes and in the shape of a board, resulting in a “light concrete”. Experiments were conducted, systematically, with a wall (considerate as a standard) constructed with blocks of ordinary concrete; two walls constructed with blocks of light concrete, distinct by the proportion of EPS/sand; a wall of ceramic bricks (“eight holes” type) and a wall with ordinary blocks of cement, in a way to obtain a comparative analysis of the thermal behavior of the systems. Others tests conducted with the blocks were: stress analysis and thermal properties analysis (ρ, cp e k). Based on the results, it was possible to establish quantitative relationship between the concentration (density) of EPS in the constructive elements and the decreasing of the heat transfer rate, that also changes the others thermal properties of the material, as was proved. It was observed that the walls of light concrete presents better thermal behavior compared with the other two constructive systems world wide used. Based in the results of the investigation, there was shown the viability of the use of EPS as aggregate (raw material) in the composition of the concrete, with the objective of the fabrication of blocks to non-structural masonry that works as a thermal insulation in buildings. A direct consequence of this result is the possibility of reduction of the consume of the electrical energy used to climatization of buildings. Other aspect of the investigation that must be pointed was the reuse of the EPS as a raw material to civil construction, with a clear benefit to reducing of environmental problems

Relevância:

60.00% 60.00%

Publicador:

Resumo:

They are in this study the experimental results of the analysis of thermal performance of composite material made from a plant matrix of polyurethane derived from castor oil of kernel of mamona (COF) and loading of clay-mineral called vermiculite expanded. Bodies of evidence in the proportions in weight of 10%, 15% and 20% were made to determine the thermal properties: conductivity (k), diffusivity (ά) and heat capacity (C), for purposes of comparison, the measurements were also performed the properties of polyurethane of castor without charge and also the oil polyurethane (PU), both already used in thermal insulation. Plates of 0.25 meters of material analyzed were manufactured for use as insulation material in a chamber performance thermal coverage. Thermocouples were distributed on the surface of the cover, and inside the material inside the test chamber and this in turn was subjected to artificial heating, consisting of a bank of incandescent lamps of 3000 w. The results obtained with the composite materials were compared with data from similar tests conducted with the camera alone with: (a) of oil PU, (b) of COF (c) glass wool, (d ) of rock wool. The heat resistance tests were performed with these composites, obtaining temperature limits for use in the range of 100 º C to 130 º C. Based on the analysis of the results of performance and thermal properties, it was possible to conclude that the COF composites with load of expanded vermiculite present behavior very close to those exhibited by commercial insulation material

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of polymer based coatings is a promising approach to reduce the corrosion problem in carbon steel pipes used for the transport of oil and gas in the oil industry. However, conventional polymer coatings offer limited properties, which often cannot meet design requirements for this type of application, particularly in regard to use temperature and wear resistance. Polymer nanocomposites are known to exhibit superior properties and, therefore, offer great potential for this type of application. Nevertheless, the degree of enhancement of a particular property is greatly dependent upon the matrix/nanoparticle material system used, the matrix/nanoparticle interfacial bonding and also the state of dispersion of the nanoparticle in the polymer matrix. The objective of the present research is to develop and characterize polymer based nanocomposites to be used as coatings in metallic pipelines for the transportation of oil and natural gas. Epoxy/SiO2 nanocomposites with nanoparticle contents of 2, 4, and 8 wt % were processed using a high-energy mill. Modifications of the SiO2 nanoparticles‟ surfaces with two different silane agents were carried out and their effect on the material properties were investigated. The state of dispersion of the materials processed was studied using Scanning and Transmission Electron Microscopy (SEM and TEM) micrographs. Thermogravimetric analysis (TG) were also conducted to determine the thermal stability of the nanocomposites. In addition, the processed nanocomposites were characterized by dynamic mechanical analysis (DMA) to investigate the effect of nanoparticles content and silane treatment on the viscoelastic properties and on the glass transition temperature. Finally, wear tests of the pin-on-disc type were carried out to determine the effects of the nanoparticles and the silane treatments studied. According to the results, the addition of SiO2 nanoparticles treated with silane increased the thermal stability, the storage modulus and Tg of the epoxy resin and decreased wear rate. This confirms that the interaction between the nanoparticles and the polymer chains plays a critical role on the properties of the nanocomposites

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The process of recycling has been stimulated by the markets for several reasons, mainly on economical and environmental. Several products have been developed from recycled materials that already exist as well as several residues have been studied in different forms of applications. The greater majority of the applications for thermal insulation in the domestic, commercial and industrial systems have been elaborated in the temperature ranges between low to medium reaching up to 180oC. Many materials such as glass wool, rock wool, polystyrene are being used which are aggressive to the environment. Such materials in spite of the effectiveness in the retention of heat flow, they cost more and when discarded take several years to be absorbed by the nature. This way, in order to adapt to a world politics concerning the preservation of the environment, the present study was intended to develop a material composed of natural/biodegradable materials and industrial residues. The development of such a product in the form of a composite material based on tyre scrapes and latex for thermal insulation is presented in this research work. Thermal and physical properties of the tire scrapes as well as latex were studied in order to use them as raw materials for the manufacture of the intended composite to be applied as a thermal insulator in hot and cold systems varying between 0ºC and 200oC, respectively. Composite blankets were manufactured manually, in weight proportions of 1:1 (50:50%); 1:2 (33:67%) and 2:1 (67:33%) (tire scrapes: latex) respectively. Physical, mechanical and thermal properties of the composites were analyzed to obtain data about the viability of using the composite as a thermal insulator. The analyses carried out were based on standards ABNT, ASTM and UL. The maximum temperature obtained for the composite as a thermal insulator was 200ºC, which meets the range of applications that could be used as a thermal insulator in domestic as well as industrial purposes. The experimental results prove that the composite can be used as a thermal insulator on heated or cooled surface

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes the development of an innovative material made from a vegetable polyurethane matrix and load of industrial waste, from retread tires, for thermal insulation and environmental comfort. Experimental procedures are presented, as well as the results of the thermal and acoustic performance of this composite material, made from an expansive foam derived from the castor seed oil and fiber of scrap tires. The residue was treated superficially with sodium hydroxide, to eliminate contaminants, and characterized macroscopically and microscopically. Samples were produced with addition of residues at levels of 5%, 10%, 15% and 20% by weight, for determination of thermal properties: conductivity, heat capacity and thermal diffusivity, sound absortion index and density. The results were compared to commercially available thermal insulation and sound absorbing products. According to the analysis of results, it was concluded that the developed composite presents characteristics that qualify it as a thermal insulation with superior performance, compared to commercial available insulation, and sound absorption capacity greater than the castor oil polyurethane s, without addition of the residue

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composites based on PEEK + PTFE + CARBON FIBER + Graphite (G_CFRP) has increased application in the top industries, as Aerospace, Aeronautical, Petroleum, Biomedical, Mechanical and Electronics Engineering challenges. A commercially available G_CFRP was warmed up to three different levels of thermal energy to identify the main damage mechanisms and some evidences for their intrinsic transitions. An experimental test rig for systematize a heat flux was developed in this dissertation, based on the Joule Effect. It was built using an isothermal container, an internal heat source and a real-time measurement system for test a sample by time. A standard conical-cylindrical tip was inserted into a soldering iron, commercially available and identified by three different levels of nominal electrical power, 40W (manufacturer A), 40W (manufacturer B), 100W and 150W, selected after screening tests: these power levels for the heat source, after one hour of heating and one hour of cooling in situ, carried out three different zones of degradation in the composite surface. The bench was instrumented with twelve thermocouples, a wattmeter and a video camera. The twelve specimens tested suffered different degradation mechanisms, analyzed by DSC (Differential Scanning Calorimetry) and TG (Thermogravimetry) techniques, Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Rays (EDX) Analysis. Before and after each testing, it was measured the hardness of the sample by HRM (Hardness Rockwell M). Excellent correlations (R2=1) were obtained in the plots of the evaporated area after one hour of heating and one hour of cooling in situ versus (1) the respective power of heat source and (2) the central temperature of the sample. However, as resulting of the differential degradation of G_CFRP and their anisotropy, confirmed by their variable thermal properties, viscoelastic and plastic properties, there were both linear and non-linear behaviour between the temperature field and Rockwell M hardness measured in the radial and circumferential directions of the samples. Some morphological features of the damaged zones are presented and discussed, as, for example, the crazing and skeletonization mechanism of G_CFRP

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use a tight-binding formulation to investigate the transmissivity and the currentvoltage (I_V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare theresults for the genomic DNA sequence with those of arti_cial sequences (the long-range correlated Fibonacci and RudinShapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same _rst neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I_V curves seem to be mostly inuenced by the short-range correlations. We also analyze in this work the electronic and thermal properties along an _-helix sequence obtained from an _3 peptide which has the uni-dimensional sequence (Leu-Glu-Thr- Leu-Ala-Lys-Ala)3. An ab initio quantum chemical calculation procedure is used to obtain the highest occupied molecular orbital (HOMO) as well as their charge transfer integrals, when the _-helix sequence forms two di_erent variants with (the so-called 5Q variant) and without (the 7Q variant) _brous assemblies that can be observed by transmission electron microscopy. The di_erence between the two structures is that the 5Q (7Q) structure have Ala ! Gln substitution at the 5th (7th) position, respectively. We estimate theoretically the density of states as well as the electronic transmission spectra for the peptides using a tight-binding Hamiltonian model together with the Dyson's equation. Besides, we solve the time dependent Schrodinger equation to compute the spread of an initially localized wave-packet. We also compute the localization length in the _nite _-helix segment and the quantum especi_c heat. Keeping in mind that _brous protein can be associated with diseases, the important di_erences observed in the present vi electronic transport studies encourage us to suggest this method as a molecular diagnostic tool

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation focuses on rock thermal conductivity and its correlations with petrographic, textural, and geochemical aspects, especially in granite rocks. It aims at demonstrating the relations of these variables in an attempt to enlighten the behavior of thermal effect on rocks. Results can be useful for several applications, such as understanding and conferring regional thermal flow results, predicting the behavior of thermal effect on rocks based upon macroscopic evaluation (texture and mineralogy), in the building construction field in order to provide more precise information on data refinement on thermal properties emphasizing a rocky material thermal conductivity, and especially in the dimension stone industry in order to open a discussion on the use of these variables as a new technological parameter directly related to thermal comfort. Thermal conductivity data were obtained by using Anter Corporation s QuicklineTM -30 a thermal property measuring equipment. Measurements were conducted at temperatures ranging between 25 to 38 OC in samples with 2cm in length and an area of at least 6cm of diameter. As to petrography data, results demonstrated good correlations with quartz and mafics. Linear correlation between mineralogy and thermal conductivity revealed a positive relation of a quartz percentage increase in relation to a thermal conductivity increase and its decrease with mafic minerals increase. As to feldspates (K-feldspate and plagioclase) they show dispersion. Quartz relation gets more evident when compared to sample sets with >20% and <20%. Sets with more than 20% quartz (sienogranites, monzogranites, granodiorites, etc.), exhibit to a great extent conductivity values which vary from 2,5 W/mK and the set with less than 20% (sienites, monzonites, gabbros, diorites, etc.) have an average thermal conductivity below 2,5 W/mK. As to textures it has been verified that rocks considered thick/porphyry demonstrated in general better correlations when compared to rocks considered thin/medium. In the case of quartz, thick rocks/porphyry showed greater correlation factors when compared to the thin/medium ones. As to feldspates (K-feldspate and plagioclase) again there was dispersion. As to mafics, both thick/porphyry and thin/medium showed negative correlations with correlation factor smaller than those obtained in relation to the quartz. As to rocks related to the Streckeisen s QAP diagram (1976), they tend to fall from alcali-feldspates granites to tonalites, and from sienites to gabbros, diorites, etc. Thermal conductivity data correlation with geochemistry confirmed to a great extent mineralogy results. It has been seen that correlation is linear if there is any. Such behavior could be seen especially with the SiO2. In this case similar correlation can be observed with the quartz, that is, thermal conductivity increases as SiO2 is incremented. Another aspect observed is that basic to intermediate rocks presented values always below 2,5 W/mK, a similar behavior to that observed in rocks with quartz <20%. Acid rocks presented values above 2,5 W/mK, a similar behavior to that observed in rocks with quartz >20% (granites). For all the other cases, correlation factors are always low and present opposite behavior to Fe2O3, CaO, MgO, and TiO2. As to Al2O3, K2O, and Na2O results are not conclusive and are statistically disperse. Thermal property knowledge especially thermal conductivity and its application in the building construction field appeared to be very satisfactory for it involves both technological and thermal comfort aspects, which favored in all cases fast, cheap, and precise results. The relation between thermal conductivity and linear thermal dilatation have also shown satisfactory results especially when it comes to the quartz role as a common, determining phase between the two variables. Thermal conductivity studies together with rocky material density can function as an additional tool for choosing materials when considering structural calculation aspects and thermal comfort, for in the dimension stone case there is a small density variation in relation to a thermal conductivity considerable variation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intelligent and functional Textile Materials have been widely developed and researched with the purpose of being used in several areas of science and technology. These fibrous materials require different chemical and physical properties to obtain a multifunctional material. With the advent of nanotechnology, the techniques developed, being used as essential tools to characterize these new materials qualitatively. Lately the application of micro and nanomaterials in textile substrates has been the objective of many studies, but many of these nanomaterials have not been optimized for their application, which has resulted in increased costs and environmental pollution, because there is still no satisfactory effluent treatment available for these nanomaterials. Soybean fiber has low adsorption for thermosensitive micro and nanocapsules due to their incompatibility of their surface charges. For this reason, in this work initially chitosan was synthesized to functionalise soybean fibres. Chitosan is a natural polyelectrolyte with a high density of positive charges, these fibres have negative charges as well as the micro/nanocápsules, for this reason the chitosan acts as auxiliary agent to cationize in order to fix the thermosensitive microcapsules in the textile substrate. Polyelectrolyte was characterized using particle size analyses and the measurement of zeta potential. For the morphological analysis scanning Electron Microscopy (SEM) and x-Ray Diffraction (XRD) and to study the thermal properties, thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), Near Infrared Spectroscopy analysis in the Region of the Fourier Transform Infrared (FTIR), colourimetry using UV-VIS spectrum were simultaneously performed on the substrate. From the measurement of zeta potential and in the determination of the particle size, stability of electrostatic chitosan was observed around 31.55mV and 291.0 nm respectively. The result obtained with (GD) for chitosan extracted from shrimp was 70 %, which according to the literature survey can be considered as chitosan. To optimize the dyeing process a statistical software, Design expert was used. The surface functionalisation of textile substrate with 2% chitosan showed the best result of K/S, being the parameter used for the experimental design, in which this showed the best response of dyeing absorbance in the range of 2.624. It was noted that soy knitting dyed with the thermosensitive micro andnanocapsules property showed excellent washing solidity, which was observed after 25 home washes, and significant K/S values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Sustainability has been evidence in the world today; organizations have sought to be more and more into this philosophy in their processes, whether products or attendance. In the present work were manufactured eco-composites with animal fiber (dog wool) that is currently discarded into the environment without any use. Project phases consisted on the initial treatment of fibers with alkaline solution (NaOH) at 0.05 mols for removal of impurities, developing methods to convert these fibers (reinforcement) blended with castor oil polyurethane (matrix) in eco-composite with different proportions (5%, 10%, 15% and 20%). Fiber properties were evaluated by analysis of SEM, XRD and FTIR. The composites were produced by compression molding with dimensions 30x30x1cm. For characterization of the composites the following tests were performed: mechanical (tensile, compression, shore hardness A) according the standards and testing water absorption, moisture regain and biodegradation. The analysis of thermal properties on fibers and composites were by TG, DSC, thermal conductivity, resistivity, heat capacity and thermal resistance. Analyzing the results of these tests, it was observed that the composite reinforced with 20% showed a better thermal performance between others composites and dimensional stability when compared to commercial thermal insulation. Also is possible to observe a balance in moisture absorption of the composite being shown with its higher absorption rate in this same sample (20%). The micrographs show the fiber interaction regions with polyurethane to fill the empty spaces. In hardness and compression testing can identify that with increasing percentage of the fiber material acquires a greater stiffness by making a higher voltage is used for forming necessary. So by the tests performed in eco-composites, the highest percentage of fiber used as reinforcement in their composition obtained a better performance compared to the remaining eco-composites, reaching values very close to the PU.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although already to exist alternative technique and economically viable for destination of used tires, quantitative data on properties of constructive elements that use the rubber waste as aggregate still are restricted. In the present work, the waste proceeding from industry of retreading as material for manufacture of composite destined to the production of constructive elements was considered. Mechanical and thermal properties of mortar had been analyzed Portland cement with addition of waste without treatment, in the ratios of 10%, 20% and 30% in mass in relation to the mass of the cement, substituting the aggregate in the trace in mortar 1:5 mass cement and sand. The size of the used residue varied between 0,30mm and 4,8mm (passing in the bolter 4,8mm and being restrained in the one of 0,30mm), being it in the formats fibers and granular. The influences of the size and the percentage of residue added to the mortar (in substitution to the aggregate) in the thermal and mechanical properties had been considered. Assays of body-of-test in thestates had been become fullfilled cool (consistency index) and hardened (absorption of water for capillarity, strength the compression, traction and strength flexural). The work is centralized in the problem of the relation thermal performance /strength mechanics of used constructive systems in regions of low latitudes (Been of the Piauí), characterized for raised indices of solar radiation.