28 resultados para Temperature range

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leishmaniasis are endemic diseases wild spread in the New and Old World, caused by the flagelated protozoan Leishmania. In the New World, the distribution of different forms of leishmaniasis is mostly in tropical regions. In the State of Rio Grande do Norte, Northeast Brazil, 85% of the captured sand flies fauna is Lutzomyia longipalpis. The distribution of the sand fly vector in the state overlaps with the disease distribution, where the presence of sand flies is associated with presence of animals shelters. The aim of this study was to analyse the blood meal preference of sand flies vector from the genus Lutzomyia spp. in laboratory conditions, to verify the vector life cicle at different temperatures sets and to identify the main blood meal source in endemic areas for visceral leishmaniasis (VL) at peri-urban regions of Natal. Sand flies samples were collected from the municipalities of São Gonçalo do Amarante and Nísia Floresta where female sand flies were grouped for the colony maintenance in the laboratory and for the analysis of the preferred source of sand fly blood meal in natural environment. The prevalence of blood meal preference and oviposition for the females sand flies was 97% for Cavia porcellus with oviposition of 19 eggs/female; 97% for Eqqus caballus with 19 eggs/female; 98% for human blood with 14 eggs/female; 71.3% for Didelphis albiventris with 8.4 eggs/female; 73% for Gallus gallus with 14 eggs/female; 86% for Canis familiaris with 10.3 eggs/female; 81.4% for Galea spixii with 26 eggs/female; 36% for Callithrix jachus with 15 eggs/female; 42.8% for Monodelphis domestica with 0% of oviposition. Female sand flies did not take a blood meal from Felis catus. Sand flies life cycle ranged from 32-40 days, with 21-50 oviposition rates approximately. This study also showed that at 32°C the life cycle had 31 days, at 28° C it had 50 days and at 22°C it increased to 79 days. Adjusting the temperature to 35°C the eggs did not hatch, thus blocking the life cycle. A total of 1540 sand flies were captured, among them, 1.310 were male and 230 were female. Whereas 86% of the sand flies captured were Lu. longipalpis as compared to 10.5% for Lu. evandroi and, 3.2% for L. lenti and 0.3% for Lu whitmani. The ratio between female and male sandfly was approximately 6 males to 1 female. In Nísia Floresta, 50.7% of the collected females took their blood meal from armadillo, 12.8% from human. Among the female sand flies captured in São Gonçalo do Amarante, 80 of them were tested for the Leishmania KDNA infectivity where 5% of them were infected with Leishmania chagasi. Female Lutzomyia spp. showed to have an opportunistic blood meal characteristic. The behavioral parameters seem to have a higher influence in the oviposition when compared to the level of total proteins detected in the host s bloodstream. A higher Lu. longipalpis life cycle viability was observed at 28°C. The increase of temperature dropped the life cycle time, which means that the life cycle is modified by temperature range, source of blood meal and humidity. Lu longipalpis was the most specie found in the inner and peridomiciliar environment. In Nísia Floresta, armadillos were the main source of blood meal for Lutzomyia spp. At São Gonçalo do Amarante, humans were the main source of blood meal due to CDC nets placed inside their houses

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural nanoclays are of great interest particularly for the production of polymer-based nanocomposites. In this work, kaolinite clays from two natural deposits in the State of the Rio Grande do Norte and Paraiba were purified with thermal treatment and chemical treatments, and characterized. Front to the gotten data, had been proposals methodologies for elimination or reduction of coarse particle texts, oxide of iron and organic substance. These methodologies had consisted of the combination of operations with thermal treatments, carried through in electric oven, and acid chemical attacks with and hydrogen peroxide. The Analyzers Thermogravimetric was used to examine the thermal stability of the nanoclays. The analysis indicated weight losses at temperatures under 110 ºC and over the temperature range of 350 to 550 ºC. Based on the thermal analysis data, the samples were submitted to a thermal treatment at 500 °C, for 8 h, to remove organic components. The X-ray diffraction patterns indicated that thermal treatment under 500 °C affect the basic structure of kaolinite. The BET surface area measurements ranged from 32 to 38 m2/g for clay samples with thermal treatment and from 36 to 53 m2/g for chemically treated samples. Thus, although the thermal treatment increased the surface area, through the removal of organic components, the effect was not significant and chemical treatment is more efficient, not affect the basic structure of kaolinite, to improve particle dispersion. SEM analysis confirms that the clay is agglomerated forming micron-size particles

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy in electrical energy by a reaction directly. The solid oxide fuel cell (SOFC) works in temperature between 900ºC up to 1000ºC, Nowadays the most material for ceramic electrolytes is yttria stabilized zirconium. However, the high operation temperature can produce problems as instability and incompatibility of materials, thermal degradation and high cost of the surround materials. These problems can be reduced with the development of intermediate temperature solid oxide fuel cell (IT-SOFC) that works at temperature range of 600ºC to 800ºC. Ceria doped gadolinium is one of the most promising materials for electrolytes IT-SOFC due high ionic conductivity and good compatibility with electrodes. The inhibition of grain growth has been investigated during the sintering to improve properties of electrolytes. Two-step sintering (TSS) is an interesting technical to inhibit this grain growth and consist at submit the sample at two stages of temperature. The first one stage aims to achieve the critical density in the initiating the sintering process, then the sample is submitted at the second stage where the temperature sufficient to continue the sintering without accelerate grain growth until to reach total densification. The goal of this work is to produce electrolytes of ceria doped gadolinium by two-step sintering. In this context were produced samples from micrometric and nanometric powders by two routes of two-step sintering. The samples were obtained with elevate relative density, higher than 90% using low energy that some works at the same area. The average grain size are at the range 0,37 μm up to 0,51 μm. The overall ionic conductivity is 1,8x10-2 S.cm and the activation energy is 0,76 eV. Results shown that is possible to obtain ceria-doped gadolinium samples by two-step sintering technique using modified routes with characteristics and properties necessary to apply as electrolytes of solid oxide fuel cell

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionic oxides with ABO3 structure, where A represents a rare earth element or an alkaline metal and B is a transition metal from group VIII of the periodic table are potential catalysts for oxidation and good candidates for steam reforming reaction. Different methods have been considered for the synthesis of the oxide materials with perovskite structure to produce a high homogeneous material with low amount of impurities and low calcination temperatures. In the current work, oxides with the LaNiO3 formula had been synthesized using the method of the polymeric precursors. The thermal treatment of the materials took place at 300 ºC for 2h. The material supported in alumina and/or zirconia was calcined at 800 ºC temperature for 4h. The samples had been characterized by the following techniques: thermogravimetry; infrared spectroscopy; X-ray diffraction; specific surface area; distribution of particle size; scanning electron microscopy and thermo-programmed reduction. The steam reforming reaction was carried out in a pilot plant using reducing atmosphere in the reactor with a mixture of 10% H2-Argon, a mass about 5g of catalyst, flowing at 50 mL.min-1. The temperature range used was 50 - 1000 oC with a heating rate of 10 oC.min-1. A thermal conductivity detector was used to analyze the gas after the water trapping, in order to permit to quantify the consumption of hydrogen for the lanthanum nickelates (LaNiO3). The results showed that lanthanum nickelate were more efficient when supported in alumina than when supported in zirconia. It was observed that the methane conversion was approximately 100% and the selectivity to hydrogen was about 70%. In all cases were verified low selectivity to CO and CO2

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Retinoic acid (RA) and hydroquinone (HQ) assets are widely used in pharmaceutical and cosmetic formulations, for having depigmenting properties and are largely produced in drugstores. To assist in the development of formulations containing the active RA and HQ National Forms of Brazilian Pharmacopoeia (2005 and 2012 ) proposes formulations with different excipients such as cetyl alcohol (AC), cetostearyl alcohol (ACT), methylparaben (MTP), propyl paraben ( PPB), glycerin (GLY), dipropylene glycol (DPG), imidazolidinil urea ( IMD ), cyclomethicone (CCM ), butylated hydroxytoluene (BHT), octyl stearate (ETO), EDTA, decil oleate (ODC) and hydroxipropymethyl celullose (HPMC). One of the difficulties found in most cosmetic formulations is the large number of incompatibilities between the components of the formulations, so the aim this study was to evaluate thermal stability and interactions between these active pharmaceutical ingredients and excipients. The depigmenting agents were analyzed by DSC and TG and excipients were analyzed by TG. The dynamic thermogravimetric curves were obtained on a SHIMADZU thermobalance, model DTG-60, using an alumina crucible, at the heating rate of 10ºC min-1, in the temperature range of 25-900 ºC, under an atmosphere of nitrogen at 50 mL min-1. The DSC curves were obtained using Shimadzu calorimeter, model DSC-60, using aluminum crucible, at the heating rate of 10ºC min-1, in the temperature range of 25-400ºC. The thermogravimetric and calorimetric curves were analyzed using TASYS software SHIMADZU. In this study no were found interactions between AR and the following excipients: MTP, PPB, IMD, ODC, EDTA, CCM, ETO, HPMC. However, were found interactions with the following excipients: AC, ACT, BHT, GLI and DPG. For HQ were found interactions with IMD and DPG. Interactions remained even changing proportions of the mixtures and the ternary. Thus, the studies conducted with excipients of National Formulary from 2005 and 2012 showed that these new excipients do not interact by thermogravimetry with the active pharmaceutical ingredients of this study

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reinforced concrete structures are largely used in buildings worldwide. Upon the occurrence of fire in buildings, there is a consensus among researchers that the concrete has a high resistance to fire, due mainly to its low thermal conductivity. However, this does not mean that this material is not affected by exposure to high temperatures. Reduction of the compressive strength, modulus of elasticity, discoloration and cracking, are some of the effects caused by thermal exposure. In the case of concretes with higher resistance occurs even desplacamentos explosives, exposing the reinforcement to fire and contributing to reducing the support capacity of the structural element. Considering the above, this study aims to examine how the compressive strength and porosity of concrete are affected when subjected to high temperatures. Were evaluated concrete of different resistances, and even was the verified if addition fibers of polyethylene terephthalate (PET) in concrete can be used as an alternative to preventing spalling. The results indicated that explosive spalling affect not only high strength concrete whose values of this study ranged from 70 to 88 MPa, as well as conventional concrete of medium strength (52 MPa) and the temperature range to which the concrete begins to suffer significant changes in their resistance is between 400 º C and 600 º C, showing to 600 º C a porosity up to 188% greater than the room temperature

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential market of the metropolitan area of Salvador accounts for the estimated consumption of roughly 800 million horizontally perforated extruded clay bricks a year. The growing demand of consumers along with the competitiveness of the structural ceramic sector has driven forward a number of recent efforts and investments towards improving the quality of structural ceramics. In this scenario, the present study focused on sampling and evaluating the conformity of 8-hole horizontally perforated extruded clay bricks manufactured by different plants (A, B and C) in the metropolitan area of Salvador. In addition, representative clay and sandy-clay materials were collected from each plant and characterized by conventional physical, chemical and mineralogical techniques. Finally, experimental compositions designated as A, B and C, according to the source, were prepared by mixing different contents of the raw materials collected in the plants, fired at different temperatures and characterized. The results revealed a series of non conformities regarding ABNT guidelines. The characterization of raw materials revealed the presence of kaolinite and ilite in concentrations ranging from 64 to 90 wt.% along with free quartz (10 - 25%). The sandy-clay samples consisted basically of kaolinite. All raw materials depicted low contents of organics, amorphous constituents, alkaline oxides and feldspar. An analysis of the firing behavior of all different ceramic compositions revealed that the linear contraction of composition A was rather significant considering the temperature range evaluated, and it justifies the significant dimensional non conformity that was shown by bricks made with the ceramic A

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tricalcium phosphate ceramics has been widely investigated in the last years due its bioresorbable behavior. The limiting factor of the application of these materials as temporary implants is its low strength resistance. The tricalcium phosphate presents an allotropic transformation β→α around 1250 ºC that degrades its resistance. Some studies have been developed in order to densify this material at this temperature range. The objective of this work is to study the influence of the addition of magnesium oxide (MgO) in the sintering of β-TCP. The processing route was uniaxial hot pressing and its objective was to obtain dense samples. The samples were physically characterized through density and porosity measurements. The thermal behavior was studied through dilatometric, thermal differential and thermogravimetric analysis. The mechanical properties were characterized by three point flexure test and Vickers microhardness measurements, analyzed of the microstructure. The addition of magnesium oxide doesn t cause an improvement of the mechanical strength in relation to material without additive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It presents a new type of insulation for ductwork hot water, which can be used in solar systems for heating water, which consists of a composite of different compositions based on plaster, cement and EPS ground, palm and water. This composite has as its main features easy assembly and manufacturing processes and low cost. Comparative results will be presented on the tests of materials and thermal tubes proposed. Four formulations were used to manufacture tubes with three diameters 70, 65 and 42mm. It was also tested conventionally used for elastomeric foam insulation to 110 ° C, for a comparative analysis with the composite pipe insulator proposed. It will demonstrate that the cost of manufacturing of such tubes is competitive with alternative elastomeric foam tested, but results of the composite tube to the temperature range studied, are lower. Another drawback of the composite insulator tube is its large mass. It would be important to test such a composite for greater levels of temperature to a diagnostic technique competitive with conventionally used insulators. A positive factor of using the proposed composite-tube would be the recycling of EPS so damaging to the environment, representing an environmentally friendly application of science

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the process of the salt production, the first the salt crystals formed are disposed of as industrial waste. This waste is formed basically by gypsum, composed of calcium sulfate dihydrate (CaSO4.2H2O), known as carago cru or malacacheta . After be submitted the process of calcination to produce gypsum (CaSO4.0,5H2O), can be made possible its application in cement industry. This work aims to optimize the time and temperature for the process of calcination of the gypsum (carago) for get beta plaster according to the specifications of the norms of civil construction. The experiments involved the chemical and mineralogical characterization of the gypsum (carago) from the crystallizers, and of the plaster that is produced in the salt industry located in Mossoró, through the following techniques: x-ray diffraction (XRD), x-ray fluorescence (FRX), thermogravimetric analysis (TG/DTG) and scanning electron microscopy (SEM) with EDS. For optimization of time and temperature of the process of calcination was used the planning three factorial with levels with response surfaces of compressive mechanical tests and setting time, according norms NBR-13207: Plasters for civil construction and x-ray diffraction of plasters (carago) beta obtained in calcination. The STATISTICA software 7.0 was used for the calculations to relate the experimental data for a statistical model. The process for optimization of calcination of gypsum (carago) occurred in the temperature range from 120° C to 160° C and the time in the range of 90 to 210 minutes in the oven at atmospheric pressure, it was found that with the increase of values of temperature of 160° C and time calcination of 210 minutes to get the results of tests of resistance to compression with values above 10 MPa which conform to the standard required (> 8.40) and that the X-ray diffractograms the predominance of the phase of hemidrato beta, getting a beta plaster of good quality and which is in accordance with the norms in force, giving a by-product of the salt industry employability in civil construction

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Naphthenic lubricating oils are used in transformers with the purpose of promoting electrical insulation and dissipating heat. The working temperature range of these oils typically lies between 60°C and 90°C and their useful life is 40 years in average. In that temperature range, the oils are decomposed during operation, whereby a small fraction of polar compounds are formed. The presence of these compounds may induce failure and loss of physical, chemical and electrical properties of the oil, thus impairing the transformer operation. By removing these contaminants, one allows the oxidized insulating oil to be reused without damaging the equipment. In view of this, an investigation on the use of surfactants and microemulsions as extracting agents, and modified diatomite as adsorbent, has been proprosed in this work aiming to remove polar substances detected in oxidized transformer oils. The extraction was carried out by a simple-contact technique at room temperature. The system under examination was stirred for about 10 minutes, after which it was allowed to settle at 25°C until complete phase separation. In another experimental approach, adsorption equilibrium data were obtained by using a batch system operating at temperatures of 60, 80 and 100°C. Analytical techniques involving determination of the Total Acidity Number (TAN) and infrared spectrophotometry have been employed when monitoring the decomposition and recovery processes of the oils. The acquired results indicated that the microemulsion extraction system comprising Triton® X114 as surfactant proved to be more effective in removing polar compounds, with a decrease in TAN index from 0.19 to 0.01 mg KOH/g, which is consistent with the limits established for new transformer oils (maximal TAN = 0.03 mg KOH/g). In the adsorption studies, the best adsorption capacity values were as high as 0.1606 meq.g/g during conventional adsoprtion procedures using natural bauxite, and as high as 0.016 meq.g/g for the system diatomite/Tensiofix® 8426. Comparatively in this case, a negative effect could be observed on the adsorption phenomenon due to microemulsion impregnation on the surface of the diatomite

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacteria trom Shewanella and Geobacter ganera are the most studied iron-reducing microorganisms particularly due to their electron transport systems and contribution to some industrial and environmental problems, including steel corrosion, bioenergy and bioremediation of petroleum-impacted sites. The present study was focused in two ways: the first is an in silico comparative ecogenomic study of Shewanella spp. with sequenced genomes, and the second is an experimental metagenomic work to detect iron-reducing Shewanella through PCR-DGGE of a metabolic gene. The in silico study resulted in positive correIation between copy number of 16S rDNA and genome size in Shewanella spp., with clusters of rrn near lhe origin of replication. This way, the genus is inferred as opportunist. There are no compact genomes and their sequences length varied, ranging from 4306142 nt in S. amazonensis SB2B to 5935403 nt in S. woodyi ATCC 51908, without correIation to temperature range characteristic of each specie. Intragenomic 16S rDNA sequences possess little divergence, but reasonable to resuIt in different phyIogenetic trees, depending on the sequence that is chosen to compare. For moIecuIar detection of iron-reducing Shewanella, it is proposed the mtrB gene as new biomarker. because it codes to a fundamental protein at Fe (III)-reduction. The specific primers were designed and evaluated in silico and resulted in a fragment of 360 pb. In the second study, these primers were tested in a genomic sample from S. oneidensis MR-1, amplifying the expected region. After this successfuI resuIt, the primer set was used as a tool to assess the iron-reducing communities of ShewaneIla genus under an environmental stress, i.e. crude oil contamination in mangrove sediment in Rio Grande do Norte State (Brazil). The primers presented high specificity and the reactions performed resulted in one single band of ampIification in the metagenomic samples. The fingerprinting obtained at DGGE reveaIed temporal variation of Shewanella spp. in analyzed samples. The resuIts presented show the detection of a biotechnological important group of microorganisms, the iron-reducing Shewanella spp. using a metabolic gane as target. It is concluded there are eight or more 16S rDNA sequences in Shewanella genus, with little divergence among them that affects the phylogeny; the pair of primers designed to ampIify mtrB sequences is a viable alternative to detect iron-reducing ShewanelIa in metagenomic approaches; such bacteria are present in the mangrove sediment anaIyzed, with temporal variations in the samples. This is the first experimental study that screened the iron-reducing Shewanella genus in a metagenomic experiment of mangrove sediments subjected to oil contamination through a key metabolic gene

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modified polyacrylamides with ≅ 0.2 mol % of N,N-dihexylacrylamide and hydrolysis degree from 0 to 25 % were synthesized by micellar copolymerization. The hydrophobic monomer was obtained by the reaction between acryloyl chloride and N,Ndihexylamine and characterized by infrared (IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The polymer molecular structures were determined through 1H and 13C NMR spectroscopy and the polymers were studied in dilute and semi-dilute regimes by viscometry, rheometry, static light scattering and photon correlation spectroscopy, at the temperature range from 25 to 55 ºC. The data obtained by viscometry showed that the intrinsic viscosity from the hydrolyzed polymers is larger than the precursor polymers at the same ionic strength. The comparison between the charged polymers showed that the polymer with higher hydrolysis degree has a more compact structure in formation water (AFS). The increase of temperature led to an enhanced reduced viscosity to the polymers in Milli-Q water (AMQ), although, in brine, only the unhydrolyzed polymer had an increase in the reduced viscosity with the temperature, and the hydrolyzed derivatives had a decrease in the reduced viscosity. The static light scattering (SLS) analyses in salt solutions evidenced a decrease of weight-average molecular weight (⎯Mw) with the increase of the hydrolysis degree, due to the reduction of the thermodynamic interactions between polymer and solvent, which was evidenced by the decrease of the second virial coefficient (A2). The polymers showed more than one relaxation mode in solution, when analyzed by photon correlation spectroscopy, and these modes were attributed to isolated coils and aggregates of several sizes. The aggregation behavior depended strongly on the ionic strength, and also on the temperature, although in a lower extension. The polymers showed large aggregates in all studied conditions, however, their solutions did not displayed a good increase in water viscosity to be used in enhanced oil recovery (EOR) processes