6 resultados para TROPHIC STRUCTURE
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Artificial lakes must differ from natural lakes in important structural and functional aspects that need to be understood so that these ecosystems can be properly managed. The aim of this work was to test the hypothesis that the artificial lakes (impoundments) in the semi-arid region of the Rio Grande do Norte State are more eutrophic and turbid and have different trophic structure when compared to the natural coastal lakes that occur in the humid eastern coast of the State. To test this hypothesis, 10 natural lakes and 8 artificial lakes with about 100 ha were sampled between September and November 2005 for the determination of some limnological variables and the abundance of the main fish species, which were grouped in three trophic guilds: facultative piscivores, facultative planktivores and omnivores. The results show that the artificial lakes had significantly higher concentrations of total nitrogen, total phosphorus, chlorophyll a , total and volatile suspended solids than the natural lakes. Results also show that the values of pH, total alkalinity, electric conductivity, turbidity as well as the coefficient of vertical attenuation of light were significantly higher in the artificial lakes than in the natural lakes. In the artificial lakes, the abundance of facultative planktivores was significantly higher, while the abundance of facultative piscivores significantly lower than in the natural lakes. There was no significant difference in the abundance of omnivorous fish between the two types of lakes. These results suggest that the increase in turbidity together with the other changes in the water quality of the artificial lakes, modifies the trophic structure of the fish communities reducing the importance of piscivores and the length of the food chains
Resumo:
The food chain theory predict that presence of omnivory prevent the trophic cascade and could be a strong stabilizing factor over resource and consumer community dynamics, and that the nutrient enrichment destabilize populations dynamics. Most of the freshwater tropical reservoirs are eutrophic, and strategies that seek improve the water quality through the control of phytoplankton biomass and nutrient input, become essential for the improvement and preservation of water quality. The aim of this study was test the zooplanktivory (when larvae) and omnivory (when young and adult) effects of Nile Tilapia over the structure and dynamics of plankton communities, in addition or absence of nutrients enrichment. For this, one field experiment was performed with a factorial design 2x3 resulting in six treatments: control, without fish and nutrient (C); with omnivorous fish (O); with zooplanktivorous fish (Z); without fish and with enrichment of nutrients (NP); with omnivorous fish and nutrients (ONP); and, with zooplanktivorous fish and nutrients (ZNP). The two planktivory types reduced the zooplankton biomass and increased the phytoplankton biomass, but the omnivory of filter-feeding fish attenuated the trophic cascade magnitude. The fertilization by nutrients increases the nutrient concentrations in water and the phytoplankton biomass, but the effect on zooplankton is dependent of the trophic structure. In a general way, the effects of the fish and nutrient addition were addictive, but significant interactions among those factors were observed in the answer of some zooplankton groups. The effects of omnivorous fish over the temporal variability of phytoplankton and zooplankton biomass were very variable, the increase or reduce in variability of the plankton depending of the level of nutrients and of the analyzed variable. With base in this study, we conclude that the planktivory type exercised by the fish and the concentrations of nutrients in the water affects the force of pelagic trophic cascades and probably the success of biomanipulation programs for the handling of water quality in lakes and tropical reservoirs
Resumo:
There are several abiotic factors reported in the literature as regulators of the distribution of fish species in marine environments. Among them stand out structural complexity of habitat, benthic composition, depth and distance from the coast are usually reported as positive influencers in the diversity of difentes species, including reef fish. These are dominant elements in reef systems and considered high ecological and socioeconomic importance. Understanding how the above factors influence the distribution and habitat use of reef fish communities are important for their management and conservation. Thus, this study aims to evaluate the influence of these variables on the community of reef fishes along an environmental gradient of depth and distance from shore base in sandstone reefs in the coast of state of Rio Grande do Norte, Brazil. These variables are also used for creating a simple predictive model reef fish biomass for the environment studied. Data collection was performed through visual surveys in situ, and recorded environmental data (structural complexity of habitat, type of coverage of the substrate, benthic invertebrates) and ecological (wealth, abundance and reef fish size classes). As a complement, information on the diet were raised through literature and the biomass was estimated from the length-weight relationship of each species. Overall, the reefs showed a low coverage by corals and the Shallow reefs, Intermediate I and II dominated by algae and the Funds by algae and sponges. The complexity has increased along the gradient and positively influenced the species richness and abundance. Both attributes influenced in the structure of the reef fish community, increasing the richness, abundance and biomass of fish as well as differentiating the trophic structure of the community along the depth gradient and distance from the coast. Distribution and use of habitat by recifas fish was associated with food availability. The predictor model identified depth, roughness and coverage for foliose algae, calcareous algae and soft corals as the most significant variables influencing in the biomass of reef fish. In short, the description and understanding of these patterns are important steps to elucidate the ecological processes. In this sense, our approach provides a new understanding of the structure of the reef fish community of Rio Grande do Norte, allowing understand a part of a whole and assist future monitoring actions, evaluation, management and conservation of these and other reefs of Brazil.
Resumo:
Omnivory is a predominant feeding strategy among tropical fishes, but knowledge about its causes and consequences of this pattern is scarce. In this study we hypothesized that tropical fish feed lower in food web as a way to compensate a higher energetic demand, which increases with increasing water temperature and body size. Information about 8172 freshwater and marine fish species from whole world, from tropical and temperate ecosystems, showed that the trophic position of non-carnivore fish decreases with increasing body size in tropical but not in temperate ecosystems. This result indicates that the higher energetic demand of large-bodied tropical fish should exert a selective force in favor of omnivory. As a consequence, trophic dynamics in tropical freshwater ecosystems should have different patterns comparing to temperate ones, with major implications for water management and restoration of eutrophic aquatic ecosystems. Another hypothesis of this work was that effects of tropical omnivorous planktivorous fish on planktonic communities depend of primary producers stoichiometric composition, which depends of light availability relative to nutrients ratios. A mesocosm experiment, manipulating light availability and planktivorous fish presence, confirmed our hypothesis indicating that resource stoichiometric composition (consequently nutritional quality), determine trophic structure of pelagic food webs in tropical lakes. Finally another mesocosm experiment indicated that the removal of omnivorous benthivorous fish should be more efficient than removal of omnivorous planktivorus fish, as a way to improve water quality in tropical lakes and reservoirs. This last experiment showed that omnivorous planktivorous fish increase phytoplankton biomass due to trophic cascade interactions, without increasing nutrient concentrations in the water column. On the other hand, omnivorous benthivorous fish, feeding on detritus and other benthonic food sources and excreting nutrients in the water column, are responsible for translocate nutrient from sediments to the water column, increasing phosphorus pool and phytoplankton biomass. Thereby, internal phosphorus supply should be reduced and water quality of eutrophicated lakes could be improved by removing omnivorous benthivorous fish.
Resumo:
Omnivory is a predominant feeding strategy among tropical fishes, but knowledge about its causes and consequences of this pattern is scarce. In this study we hypothesized that tropical fish feed lower in food web as a way to compensate a higher energetic demand, which increases with increasing water temperature and body size. Information about 8172 freshwater and marine fish species from whole world, from tropical and temperate ecosystems, showed that the trophic position of non-carnivore fish decreases with increasing body size in tropical but not in temperate ecosystems. This result indicates that the higher energetic demand of large-bodied tropical fish should exert a selective force in favor of omnivory. As a consequence, trophic dynamics in tropical freshwater ecosystems should have different patterns comparing to temperate ones, with major implications for water management and restoration of eutrophic aquatic ecosystems. Another hypothesis of this work was that effects of tropical omnivorous planktivorous fish on planktonic communities depend of primary producers stoichiometric composition, which depends of light availability relative to nutrients ratios. A mesocosm experiment, manipulating light availability and planktivorous fish presence, confirmed our hypothesis indicating that resource stoichiometric composition (consequently nutritional quality), determine trophic structure of pelagic food webs in tropical lakes. Finally another mesocosm experiment indicated that the removal of omnivorous benthivorous fish should be more efficient than removal of omnivorous planktivorus fish, as a way to improve water quality in tropical lakes and reservoirs. This last experiment showed that omnivorous planktivorous fish increase phytoplankton biomass due to trophic cascade interactions, without increasing nutrient concentrations in the water column. On the other hand, omnivorous benthivorous fish, feeding on detritus and other benthonic food sources and excreting nutrients in the water column, are responsible for translocate nutrient from sediments to the water column, increasing phosphorus pool and phytoplankton biomass. Thereby, internal phosphorus supply should be reduced and water quality of eutrophicated lakes could be improved by removing omnivorous benthivorous fish.
Resumo:
Artificial lakes must differ from natural lakes in important structural and functional aspects that need to be understood so that these ecosystems can be properly managed. The aim of this work was to test the hypothesis that the artificial lakes (impoundments) in the semi-arid region of the Rio Grande do Norte State are more eutrophic and turbid and have different trophic structure when compared to the natural coastal lakes that occur in the humid eastern coast of the State. To test this hypothesis, 10 natural lakes and 8 artificial lakes with about 100 ha were sampled between September and November 2005 for the determination of some limnological variables and the abundance of the main fish species, which were grouped in three trophic guilds: facultative piscivores, facultative planktivores and omnivores. The results show that the artificial lakes had significantly higher concentrations of total nitrogen, total phosphorus, chlorophyll a , total and volatile suspended solids than the natural lakes. Results also show that the values of pH, total alkalinity, electric conductivity, turbidity as well as the coefficient of vertical attenuation of light were significantly higher in the artificial lakes than in the natural lakes. In the artificial lakes, the abundance of facultative planktivores was significantly higher, while the abundance of facultative piscivores significantly lower than in the natural lakes. There was no significant difference in the abundance of omnivorous fish between the two types of lakes. These results suggest that the increase in turbidity together with the other changes in the water quality of the artificial lakes, modifies the trophic structure of the fish communities reducing the importance of piscivores and the length of the food chains