2 resultados para Systematic errors
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The objective of this research is to discuss about the need for implementation of new alternatives for the implementation on the metrological control: on the findings of initial and subsequent measurements, the control procedures of measurement uncertainty applied in assessing the loss or remains found in handling operations of bulk liquids, when used turbine meters used in measuring the tax on the business of Petrobras, due to the current environment of legal metrology and scientific, both domestic and international. We aim, with these alternatives: standardizing the minimization of random and systematic errors, the estimate of the remaining errors, as well as the management control of metrological calibration procedures, control of measurement uncertainty, and contribute to the change in the form of performance of legal metrology and scientific disseminating new information to change management of metrological control, objectively focused on aspects of supervision in implementing these activities in the control of the uncertainties of measurement used in our processes in the fiscal measurement system Petrobras. Results are presented, information and comments on the influence of measurement uncertainty in the current results of the fiscal and transfer of custody. This will emphasize the need, among other things, improvement and expansion of metrological control monitored by setting a better meet demand, calibration equipment and measuring instruments for Petrobras. Finally, we intend to establish the need for improving the method of evaluation of the data meter applied to the current management control of measurement uncertainty by proposing a methodology for addressing the problem, as well as highlighting the expected results.
Resumo:
The objective of this study was to determine the seasonal and interannual variability and calculate the trends of wind speed in NEB and then validate the mesoscale numerical model for after engage with the microscale numerical model in order to get the wind resource at some locations in the NEB. For this we use two data sets of wind speed (weather stations and anemometric towers) and two dynamic models; one of mesoscale and another of microscale. We use statistical tools to evaluate and validate the data obtained. The simulations of the dynamic mesoscale model were made using data assimilation methods (Newtonian Relaxation and Kalman filter). The main results show: (i) Five homogeneous groups of wind speed in the NEB with higher values in winter and spring and with lower in summer and fall; (ii) The interannual variability of the wind speed in some groups stood out with higher values; (iii) The large-scale circulation modified by the El Niño and La Niña intensified wind speed for the groups with higher values; (iv) The trend analysis showed more significant negative values for G3, G4 and G5 in all seasons and in the annual average; (v) The performance of dynamic mesoscale model showed smaller errors in the locations Paracuru and São João and major errors were observed in Triunfo; (vi) Application of the Kalman filter significantly reduce the systematic errors shown in the simulations of the dynamic mesoscale model; (vii) The wind resource indicate that Paracuru and Triunfo are favorable areas for the generation of energy, and the coupling technique after validation showed better results for Paracuru. We conclude that the objective was achieved, making it possible to identify trends in homogeneous groups of wind behavior, and to evaluate the quality of both simulations with the dynamic model of mesoscale and microscale to answer questions as necessary before planning research projects in Wind-Energy area in the NEB