2 resultados para Système Multi-agents

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The industrial automation is directly linked to the development of information tecnology. Better hardware solutions, as well as improvements in software development methodologies make possible the rapid growth of the productive process control. In this thesis, we propose an architecture that will allow the joining of two technologies in hardware (industrial network) and software field (multiagent systems). The objective of this proposal is to join those technologies in a multiagent architecture to allow control strategies implementations in to field devices. With this, we intend develop an agents architecture to detect and solve problems which may occur in the industrial network environment. Our work ally machine learning with industrial context, become proposed multiagent architecture adaptable to unfamiliar or unexpected production environment. We used neural networks and presented an allocation strategies of these networks in industrial network field devices. With this we intend to improve decision support at plant level and allow operations human intervention independent

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new paradigm for collective learning in multi-agent systems (MAS) as a solution to the problem in which several agents acting over the same environment must learn how to perform tasks, simultaneously, based on feedbacks given by each one of the other agents. We introduce the proposed paradigm in the form of a reinforcement learning algorithm, nominating it as reinforcement learning with influence values. While learning by rewards, each agent evaluates the relation between the current state and/or action executed at this state (actual believe) together with the reward obtained after all agents that are interacting perform their actions. The reward is a result of the interference of others. The agent considers the opinions of all its colleagues in order to attempt to change the values of its states and/or actions. The idea is that the system, as a whole, must reach an equilibrium, where all agents get satisfied with the obtained results. This means that the values of the state/actions pairs match the reward obtained by each agent. This dynamical way of setting the values for states and/or actions makes this new reinforcement learning paradigm the first to include, naturally, the fact that the presence of other agents in the environment turns it a dynamical model. As a direct result, we implicitly include the internal state, the actions and the rewards obtained by all the other agents in the internal state of each agent. This makes our proposal the first complete solution to the conceptual problem that rises when applying reinforcement learning in multi-agent systems, which is caused by the difference existent between the environment and agent models. With basis on the proposed model, we create the IVQ-learning algorithm that is exhaustive tested in repetitive games with two, three and four agents and in stochastic games that need cooperation and in games that need collaboration. This algorithm shows to be a good option for obtaining solutions that guarantee convergence to the Nash optimum equilibrium in cooperative problems. Experiments performed clear shows that the proposed paradigm is theoretical and experimentally superior to the traditional approaches. Yet, with the creation of this new paradigm the set of reinforcement learning applications in MAS grows up. That is, besides the possibility of applying the algorithm in traditional learning problems in MAS, as for example coordination of tasks in multi-robot systems, it is possible to apply reinforcement learning in problems that are essentially collaborative