3 resultados para Synaptic contacts

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cortical development requires a precise process of proliferation, migration, survival and differentiation of newly formed neurons to finally achieve the development of a functional network. Different kinases, such as PKA, CaMKII, MAPK and PI3K, phosphorylate the transcription factors CREB, and thus activate it, inducing CREB-dependent gene expression. In order to identify the involvement of such signaling pathways mediated by CREB over neuronal differentiation and survival, in vitro experiments of cell culture were conducted using pharmacological kinase inhibitors and genetic techniques to express different forms of CREB (A-CREB and CREB-FY) in cortical neurons. Inhibition of PKA and CaMKII decreased the length of neuronal processes (neurites); whereas inhibition of MAPK did not affect the length, but increased the number of neurites. Blockade of PI3K do not appear to alter neuronal morphology, nor the soma size changed with the kinase blockades. CREB activation (CREB-FY) along with MAPK and PI3K blockades presented a negative side effect over neuritic growth and the expression of A-CREB leaded to a significant decrease in neuronal survival after 60h in vitro and mimicked some of the effects on neuronal morphology observed with PKA and CaMKII blockade. In summary the signaling through CREB influences the morphology of cortical neurons, particularly when phosphorylated by PKA, and CREB signaling is also important for survival of immature neurons prior to the establishment of fully functional synaptic contacts. Our data contribute to understanding the role of CREB signaling, activated by different routes, on survival and neuronal differentiation and may be valuable in the development of regenerative strategies in different neurological diseases

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary somatosensory cortex (S1) receives inputs from peripheral tactile receptors and plays a crucial role on many important behaviors. However, the plastic potential of this region is greatly reduced during adulthood, limiting functional recovery after injuries. This fact is due to the presence, in the brain parenchima, of structures and substances that have an inhibitory effect on plasticity, such as chondroitin sulfate proteoglicans (CSP) present in the perineuronal.nets (PNNs) surrounding a subset of neurons. Maturation of PNNs coincide with the closure of critical periods of plasticity in cortical areas, since CSP act to stabilize synaptic contacts. Removal of CSP is proven to be an effective therapeutic approach to restore plasticity and increase the odds of functional recovery after cortical lesion. In the present work, we removed CSP from the sensorimotor cortex of rats to restore plasticity and promote the compensatory morphofunctional regeneration of cortical circuits modified by removal of mystacial vibrissae during the critical period. Treatment with the CSP-digesting enzyme chondroitinase ABC proved efficient to restore plasticity in S1 circuits, as evidenced by morphological rearrangements and functional recovery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary somatosensory cortex (S1) receives inputs from peripheral tactile receptors and plays a crucial role on many important behaviors. However, the plastic potential of this region is greatly reduced during adulthood, limiting functional recovery after injuries. This fact is due to the presence, in the brain parenchima, of structures and substances that have an inhibitory effect on plasticity, such as chondroitin sulfate proteoglicans (CSP) present in the perineuronal.nets (PNNs) surrounding a subset of neurons. Maturation of PNNs coincide with the closure of critical periods of plasticity in cortical areas, since CSP act to stabilize synaptic contacts. Removal of CSP is proven to be an effective therapeutic approach to restore plasticity and increase the odds of functional recovery after cortical lesion. In the present work, we removed CSP from the sensorimotor cortex of rats to restore plasticity and promote the compensatory morphofunctional regeneration of cortical circuits modified by removal of mystacial vibrissae during the critical period. Treatment with the CSP-digesting enzyme chondroitinase ABC proved efficient to restore plasticity in S1 circuits, as evidenced by morphological rearrangements and functional recovery.