9 resultados para Symbiotic fungus

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mushrooms have been object of intense research in view of its potential raising of application in different sectors of the pharmacology and alimentary industry. Among diverse bioactive composites of polyssacharides nature that exist in the fungus the glucans are much searched. These are polymers of glucose and classified as the type of glicosidic linking [α, β]. Peroxisome proliferator-activated receptors (PPARs), ranscription factors belonging to the family of nuclear receptors that bind themselves o specific agonists, have shown their importance in controlling the inflammatory process. The aim of this study was to perform a chemical characterization of extract rom the mushroom Caripia montagnei, assess its antiinflammatory and antibacterial effect and determine if this effect occurs via PPAR. This mushroom is composed of carbohydrates (63.3±4.1%), lipids (21.4l±0.9%) and proteins (2.2± 0.3%). The aqueous solution resulting from the fractionation contained carbohydrates (98.7±3.3%) and protein (1.3±0.25%). Analyses of infrared spectrophotometry and of nuclear magnetic esonance demonstrated that the extract of mushroom C. montagnei is rich in β-glucans. In hioglycolate-induced peritonitis, the C. montagnei glucans (50 mg/kg) educed the inflammatory process in 65.5±5.2% and agonists, pharmacological igands, for PPAR: Wy-14643 (49.3±6.1%), PFOA (48.9±3.8%) and clofibrate in 45.2±3.2%. Sodium diclofenac showed a reduction of 81.65±0.6%. In the plantar edema, the glucans from C. montagnei (50 mg/kg) and L-NAME reduced the edema to a similar degree 91.4±0.3% and 92.8±0,5 %, respectively. In all the groups tested, nitric oxide (NO), an inflammation mediator, showed a significant reduction in the nitrate/nitrite levels when compared to the positive control (P<0.001). The C. montagnei glucans did not show cytotoxicity in the concentrations tested (2.5, 5.0, 10.0, 20.0 and 40.0 µg/100 µL). Antibacterial activity demonstrated that, unlike total extract, there was no inhibition of bacterial growth. The C. montagnei glucans show great potential for antiinflammatory applications. This effect suggests that it is mediated by PPAR activation and by COX and iNOS inhibition

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several pharmacological properties have been attributed to isolated compounds from mushroom. Recently, have these compounds, especially the polysaccharides derived from mushrooms, modulate the immune system, and its antitumor, antiviral, antibiotic and antiinflammatory activities. This study assesses the possible pharmacological properties of the polysaccharides from Scleroderma nitidum mushroom. The centesimal composition of the tissue showed that this fungus is composed mainly of fibers (35.61%), ash (33.69%) and carbohydrates (25.31%). The chemical analysis of the polysaccharide fraction showed high levels of carbohydrates (94.71%) and low content of protein (5.29%). These polysaccharides are composed of glucose, galactose, mannose and fucose in the following molar ratios 0.156, 0.044, 0.025, 0.066 and the infrared analysis showed a possible polysaccharide-protein complex. The polysaccharides from Scleroderma nitidum showed antioxidant potential with concentration-dependent antioxidant activity compared to ascorbic acid. The analysis scavenging of superoxide radical and inhibition of lipid peroxidation showed that the polysaccharides from S. nitidum have an IC50 of 12.70 mg/ml and EC50 10.4 μg/ml, respectively. The antioxidant activity was confirmed by the presence of reducing potential of these polysaccharides. The effect of these polymers on the inflammatory process was tested using the carrageenan or histamine-induced paw edema model and the sodium thioglycolate or zymosan-induced model. The polysaccharides were effective in reducing edema (73% at 50 mg/kg) and cell infiltrate (37% at 10 mg/kg) in both inflammation models tested. Nitric oxide, a mediator in the inflammatory process, showed a reduction of around 26% at 10 mg/kg of body weight. Analysis of pro- and anti-inflammatory cytokines showed that in the groups treated with polysaccharides from S. nitidum there was an increase in cytokines such as IL-1ra, IL-10, and MIP-1β concomitant with the decrease in INF-γ (75%) and IL-2 (22%). We observed the influence of polysaccharides on the modulation of the expression of nuclear factor κB. Thus, polysaccharides from S. nitidum reduced the expression of NF-κB by up to 64%. The results obtained suggest that NF-κB modulation is one of the possible mechanisms that explain the anti-inflammatory effect of polysaccharides from the fungus S. nitidum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exopolysaccharides are extracellular compounds produced by some species of fungi and bacteria. It is suggested that these molecules, even when in the form of complex polysaccharide-peptide, are the main bioactive molecules of many fungus. Some of the biological activities displayed by these compounds can be accentuated and others may arise when you add chemically polar or nonpolar groups to polysaccharides. The fruiting body of Pleurotus sajor-caju produces a heteropolysaccharide with antineoplastic and antimicrobial activity, but other biological activities of this polymer have not been evaluated. In this work the exopolysaccharide of Pleurotus sajor-caju was sulfated chemically and structurally characterized. We also evaluated the antiproliferative, antioxidant and anticoagulant activities from native exopolysaccharide (PN) and its sulfated derivated (PS). Polyacrylamide gel electrophoresis, infrared spectroscopy and nuclear magnetic resonance (¹³C) proved successful in sulfation of PN to obtain PS. Analysis by gas chromatography-mass spectroscopy showed that PN and PS are composed of mannose, galactose, 3-O-methyl-galactose and glucose in proportion percentage of 44,9:16,3:19,8:19 and 49, 7:14,4:17,7:18,2, respectively. The percentage of sulfate found in PS was 22.5%. Antioxidants assays revealed that the sulfation procedure affects differently the activities of exopolysaccharides, while the total antioxidant capacity, the scavenging activity of superoxide radical and ferric chelating were not affected by sulfation, on the other hand the chemical modification of PN enhanced the scavenging activity of hydroxyl radical and reducing power. PS also showed anticoagulant activity in a dose-dependent manner and clotting time was 3.0 times higher than the baseline value in APTT at 2 mg/mL. The exopolysaccharide not presented antiproliferative activity against HeLa tumor cells, but PS affects the cellular proliferation in a time-dependent manner. After 72 h, the inhibition rate of PS (2.0 mg/mL) on HeLa cells was about 60%. The results showed that PN sulfation increase some of their activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Globulins fractions of legume seeds of Crotalaria pallida, Erytrina veluntina and Enterolobium contortisiliquum were isolated and submitted to assays against serine, cysteine and aspartic proteinases, as also amylase present in midgut of C. maculatus and Z. subfasciatus. Hemagglutination assays indicated presence of a lectin in E. veluntina globulin fractions. This lectin had affinity to human erythrocytes type A, B and O. Vicilins were purified by chromatography on Sephacryl S-300 followed of a chromatography on Sephacryl S-200, which was calibrated using protein markers. Vicilins from C. pallida (CpV) and E. veluntina (EvV) seeds had a molecular mass of 124.6 kDa and E. contortisiliquum a molecular mass of 151kDa. Eletrophoresis in presence of SDS showed that CpV was constituted by four subunities with apparent molecular mass of 66, 63, 57 and 45 kDa, EvV with three subunities with apparent molecular mass of 45kDa and EcV four subunities, two with 37.1 kDa and two with 25.8 kDa. Non denaturantig eletrophoresis displayed single bands with high homogeneity, where CpV had lower acidic behavior. All vicilins are glycoproteins with carbohydrate contents at 1 to1.5%. Bioassays were done to detect deleterious effects of vicilins against C. maculatus and Z. subfasciatus larvae. CpV, EvV and EcV exhibited a WD50 of 0.28, 0.19 and 1.03%; LD50 0.2, 0.26, and 1.11% respectively to C. maculatus. The dose responses of CpV, EvV and EcV to Z. subfasciatus were: WD50 of 0.12, 0.14, 0.65% and LD50 of 0.09, 0.1, and 0.43% respectively. The mechanism of action of these proteins to bruchids should be based on their properties of bind to chitin present in mid gut of larvae associated with the low digestibility of vicilin. In assays against phytopatogenous fungus, only EcV was capable of inhibit F. solani growth at concentrations of 10 and 20 µg and its action mechanism should be also based in the affinity of EcV to chitin present in the fungi wall

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan is a natural polymer, biodegradable, nontoxic, high molecular weight derived from marine animals, insects and microorganisms. Oligomers of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) have interesting biological activities, including antitumor effects, antimicrobial activity, antioxidant and others. The alternative proposed by this work was to study the viability of producing chitooligosaccharides using a crude enzymes extract produced by the fungus Metarhizium anisopliae. Hydrolysis of chitosan was carried out at different times, from 10 to 60 minutes to produce chitooligosaccharides with detection and quantification performed by High Performace Liquid Chromatography (HPLC). The evaluation of cytotoxicity of chitosan oligomers was carried out in tumor cells (HepG2 and HeLa) and non-tumor (3T3). The cells were treated for 72 hours with the oligomers and cell viability investigated using the method of MTT. The production of chitosan oligomers was higher for 10 minutes of hydrolysis, with pentamers concentration of 0.15 mg/mL, but the hexamers, the molecules showing greater interest in biological properties, were observed only with 30 minutes of hydrolysis with a concentration of 0.004 mg/mL. A study to evaluate the biological activities of COS including cytotoxicity in tumor and normal cells and various tests in vitro antioxidant activity of pure chitosan oligomers and the mixture of oligomers produced by the crude enzyme was performed. Moreover, the compound with the highest cytotoxicity among the oligomers was pure glucosamine, with IC50 values of 0.30; 0.49; 0.44 mg/mL for HepG2 cells, HeLa and 3T3, respectively. Superoxide anion scavenging was the mainly antioxidant activity showed by the COS and oligomers. This activity was also depending on the oligomer composition in the chitosan hydrolysates. The oligomers produced by hydrolysis for 20 minutes was analyzed for the ability to inhibit tumor cells showing inhibition of proliferation only in HeLa cells, did not show any effect in HepG2 cells and fibroblast cells (3T3)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dermatomycoses are fungal infections that attack the skin, hair and nails, in addition to the mucosal and cutaneous-mucosal zones. Objective: Observe the frequency of dermatomycoses, identify etiological agents and establish an association between the results and sex. Age, collection site, time and lesion location. Methods: Between February, 2002 and December, 2004, samples were collected from patients at Giselda Trigueiro Hospital in Natal, Brazil, by lesion scraping and hair removal, following 70% alcohol disinfection, and submitted to direct and culture examination. Results: Of the 817 lesions collected, 325 (39.8%) were fungus positive, with the hair collection site yielding the highest number of positive results (65.8%) and the scalp and hair representing the most frequent lesion sites (65.9%). Negative results occurred mainly in the lower limbs (78.6%). Of the species identified, 55.9% were yeasts, 41.6% dermatophytes and 2.5% Fusarium spp. Non-albicans Candida was the most isolated yeast (43.3%), mainly in females (61.7%) over the age of 40 years (56.4%). T. rubrum was the most isolated dermatophyte (67.9%),notably in males (59.2%) in the 0-20 age group (44.7%). With respect to collection site, 73.9% of the dermatophytes were present in the skin and 61.1% of the yeasts in the nails. When assessing the collection site, the inguinocrural regional was 22.6% positive for dermatophytes, and the nails and hands, 41.8% for yeasts. Conclusions: The results obtained verified that: most of the positive lesions were found in the hair, whereas skin and nail lesions yielded more negative results; T. rubrum was the most isolated dermatophyte and non-albicans candida the most commonly found yeast; positivity was greater in males in the 0-20 year age group at the skin site and in the inguinocrural region, while yeasts were more frequent in females in the over-40 age group at the nail sites

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid substrate cultivation (SSC) has become an efficient alternative towards rational use of agro industrial wastes and production of value-added products, mainly in developing countries. This work presents the production and functional application results of phenolic extracts obtained by solid substrate cultivation of pineapple (Ananas comosus L.) and guava (Psidium guajava L.) residues associated to soy flour and bioprocessed by Rhizopus oligosporus fungus. Two experimental groups were tested: (1) 9g of fruit residue and 1g of soy flour (A9 or G9); (2) 5g of fruit residue and 5g of soy flour (A5 or G5). After SSC, 100ml of distilled water was added to each Erlenmeyer flask containing 10g of bioprocessed material in order to obtain the phenolic extracts. Samples were taken every two days for total phenolic concentration (TPC) and antioxidant capacity evaluation by DPPH test during 12-day cultivation. The 2-day and 10-d ay extracts were selected and concentrated by ebullition until 1/10 of original volume was reached. After that, both non-concentrated and concentrated extracts were evaluated for their antimicrobial activity against Staphylococcus aureus and Salmonella enterica and a-amylase inhibitory capacity. It was observed an inverse relationship between total phenolic concentration (TPC) and antioxidant capacity during the cultivation. Besides that, the concentrated pineapple samples after two days were able to inhibit both pathogens tested, especially S. aureus. Guava concentrated extracts after 2 days showed expressive inhibition against S. enterica, but negative results against S. aureus growth. When it comes to a-amylase inhibition, A9 extracts after 2 days, both concentrated or not, completely inhibited enzyme activity. Similar behavior was observed for G9 samples, but only for concentrated samples. It was shown that concentration by ebullition positively affected the enzymatic inhibition of G9 and A9 samples, but on the other side, decreased antiamylase activity of A5 and G5 samples

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of enzymes by microorganisms using organic residues is important and it can be associated with several applications such as food and chemical industries and so on. The objective of this work is the production of CMCase, Xylanase, Avicelase and FPase enzymes by solid state fermentation (SSF) using as substrates: bagasse of coconut and dried cashew stem. The microorganisms employed are Penicillium chrysogenum and an isolated fungus from the coconut bark (Aspergillus fumigatus). Through the factorial design methodology and response surface analysis it was possible to study the influence of the humidity and pH. For Penicillium chrysogenum and the isolated fungus, the coconut bagasse was used as culture medium. In another fermentation, it was used the mixture of coconut bagasse and cashew stem. Fermentations were conducted using only the coconut bagasse as substrate in cultures with Penicillium chrysogenum fungus and the isolated one. A mixture with 50% of coconut and 50% of cashew stem was employed only for Penicillium chrysogenum fungus, the cultivation conditions were: 120 hours at 30 °C in BOD, changing humidity and pH values. In order to check the influence of the variables: humidity and pH, a 2 2 factorial experimental design was developed, and then two factors with two levels for each factor and three repetitions at the central point. The levels of the independent variables used in ascending order (-1, 0, +1), to humidity, 66%, 70.5% and 75% and pH 3, 5 and 7, respectively. The software STATISTICA TM (version 7.0, StatSoft, Inc.) was used to calculate the main effects of the variables and their interactions. The response surface methodology was used to optimize the conditions of the SSF. A chemical and a physic-chemical characterization of the coconut bagasse have determined the composition of cellulose (%) = 39.09; Hemicellulose (%) = 23.80, Total Lignin (%) = 36.22 and Pectin (%) = 1.64. To the characterization of cashew stem, the values were cellulose (g) = 15.91 Hemicellulose (%) = 16.77, Total Lignin (%) = 30.04 and Pectin (%) = 15.24. The results indicate the potential of the materials as substrate for semisolid fermentation enzyme production. The two microorganisms used are presented as good producers of cellulases. The results showed the potential of the fungus in the production of CMCase enzyme, with a maximum of 0.282 UI/mL and the Avicelase enzyme the maximum value ranged from 0.018 to 0.020 UI/ mL, using only coconut bagasse as substrate. The Penicillium chrysogenum fungus has showed the best results for CMCase = 0.294 UI/mL, FPase = 0.058 UI/mL, Avicelase = 0.010 UI/mL and Xylanase = 0.644 UI/ mL enzyme, using coconut bagasse and cashew stem as substrates. The Penicllium chrysogenum fungus showed enzymatic activities using only the coconut as substrate for CMCase = 0.233 UI/mL, FPase = 0.031 to 0.032 UI/ mL, Avicelase = 0.018 to 0.020 UI/mL and Xylanase = 0.735 UI/ mL. Thus, it can be concluded that the used organisms and substrates have offered potential for enzyme production processes in a semi-solid cultivation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need for new sources of energy and the concern about the environment have pushed the search for renewable energy sources such as ethanol. The use of lignocellulosic biomass as substrate appears as an important alternative because of the abundance of this raw material and for it does not compete with food production. However, the process still meets difficulties of implementation, including the cost for production of enzymes that degrade cellulose to fermentable sugars. The aim of this study was to evaluate the behavior of the species of cactus pear Opuntia ficus indica and Nopalea cochenillifera, commonly found in northeastern Brazil, as raw materials for the production of: 1) cellulosic ethanol by simultaneous saccharification and fermentation (SSF) process, using two different strains of Saccharomyces cerevisiae (PE-2 and LNF CA-11), and 2) cellulolytic enzymes by semi-solid state fermentation (SSSF) using the filamentous fungus Penicillium chrysogenum. Before alcoholic fermentation process, the material was conditioned and pretreated by three different strategies: alkaline hydrogen peroxide, alkaline using NaOH and acid using H2SO4 followed by alkaline delignification with NaOH. Analysis of composition, crystallinity and enzymatic digestibility were carried out with the material before and after pretreatment. In addition, scanning electron microscopy images were used to compare qualitatively the material and observe the effects of pretreatments. An experimental design 2² with triplicate at the central point was used to evaluate the influence of temperature (30, 40 and 45 °C) and the initial charge of substrate (3, 4 and 5% cellulose) in the SSF process using the material obtained through the best condition and testing both strains of S. cerevisiae, one of them flocculent (LNF CA-11). For cellulase production, the filamentous fungus P. chrysogenum was tested with N. cochenillifera in the raw condition (without pretreatment) and pretrated hydrothermically, varying the pH of the fermentative medium (3, 5 and 7). The characterization of cactus pear resulted in 31.55% cellulose, 17.12% hemicellulose and 10.25% lignin for N. cochenillifera and 34.86% cellulose, 19.97% hemicellulose and 15.72% lignin for O. ficus indica. It has also been determined, to N. cochenillifera and O. ficus indica, the content of pectin (5.44% and 5.55% of calcium pectate, respectively), extractives (26.90% and 9.69%, respectively) and ashes (5.40% and 5.95%). Pretreatment using alkaline hydrogen peroxide resulted in the best cellulose recovery results (86.16% for N. cochenillifera and 93.59% for O. ficus indica) and delignification (48.79% and 23.84% for N. cochenillifera and O. ficus indica, respectively). This pretreatment was also the only one which did not increase the crystallinity index of the samples, in the case of O. ficus indica. However, when analyzing the enzymatic digestibility of cellulose, alkali pretreatment was the one which showed the best yields and therefore it was chosen for the tests in SSF. The experiments showed higher yield of conversion of cellulose to ethanol by PE-2 strain using the pretreated N. cochenillifera (93.81%) at 40 °C using 4% initial charge of cellulose. N. cochenillifera gave better yields than O. ficus indica and PE-2 strain showed better performance than CA-11. N. cochenillifera proved to be a substrate that can be used in the SSSF for enzymes production, reaching values of 1.00 U/g of CMCase and 0.85 FPU/g. The pretreatment was not effective to increase the enzymatic activity values