26 resultados para Surface-tension

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Discs were grade II cp Ti oxynitride by plasma of Ar - N2 - O2 using different proportions of individual gases. These ratios were established from analysis of optical emission spectroscopy (OES) of plasma species. The proportions that resulted in species whose spectra showed an abrupt change of light intensity were chosen for this study. Nanohardness tests revealed that there was a correlation between the intensity of N2 + species with the hardness, because the treatments where they had a higher intensity, obtained a higher value nanohardness, although the crystalline phases have remained unchanged. With respect to topography, it was observed that in general, the surface roughness is related to the intensities of plasma species, because they may have different values depending on the behavior of the species. Images obtained by optical microscopy revealed a surface with grains of different colors to optical reflectance showed a peak of reflection in the red area. Measures the contact angle and surface tension showed hydrophilic properties and hydrophilic with little variation of polar and dispersive components of surface tension

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work reports the influence of the poly (ethylene terephthalate) textile and films surface modification by plasmas of O2 and mixtures (N2 + O2), on their physical and chemical properties. The plasma surface polymeric modification has been used for many researchs, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, the treatment was carried out in a vacuum chamber. Some parameters remained constant during all treatment, such as: Voltage 470 V; Pressure 1,250 Mbar; Current: 0, 10 A and gas flow: 10 cm3/min, using oxygen plasma alternating the treatment time 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) which was varied only the gas composition from 0 to 100% leaving the treatment time remaining constant to all treatment (10 min). The plasma treatment was characterized in-situ with Optics Emission Spectroscopy (OES), and the samples was characterized by contact angle, surface tension, Through Capillary tests, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, scanning electronic Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The results showed that oxygen treated fabrics presented high wettability, due to the hydrophilic groups incorporation onto the surface formed through spputering of carbon atoms. For the nitrogen atmosphere, there is the a film deposition of amine groups. Treatment with small oxygen concentration in the mixture with nitrogen has a higher spputered species of the samples

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the search for products that act as corrosion inhibitors and do not cause environmental, impact the use of plant extracts as corrosion inhibitors is becoming a promising alternative. In this work the efficiency of polar extracts (ethanol extracts) obtained from the plants Anacardium occidentale Linn (AO) and Phyllantus amarus Schum. & Thonn (PA) as corrosion inhibitors were evaluated in different concentrations. For that AO and PA extracts were solubilized in the microemulsion systems (SME) containing saponified coconut oil as surfactant (SME -OCS and SME-OCS-1) in saline (NaCl 3,5 %) solution, which was also used as electrolyte. Both SME-OCS and SME-OCS-1 were characterized by surface tension and viscosity methods showing a Newtonian fluid behavior. The SME-OCS and SME-OCS-1 systems satisfactorily solubilized the polar extracts AO and PA with measurements carried out by ultraviolet spectroscopy. The measurements of corrosion inhibition efficiencies were performed by the electrochemical linear polarization resistance (LPR) technique as well as weight loss, on the surface of AISI 1020 carbon steel. The maximum corrosion inhibition efficiencies were determined by extrapolation of Tafel plots, showing the following values: 95,6 % for the system SME-OCS-AO, 98,9 % for the system SME-OCS-AO-1 and 93,4 % for the system SME-OCS-PA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A polyester film has a vast application field, due some properties that are inherent of this kind of material such as, good mechanical resistance, chemical resistance to acids and bases and low production cost. However, this material has some limitations as low superficial tension, flat surface, low affinity to dyers, and poor adhesion which impede the use of the same ones for some finality as good wettability. Among the existent techniques to increase the superficial tension, plasma as energy source is the more promising technique, because of their versatility and for not polluting the environment. The plasma surface polymeric modification has been used for many researchers, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, polyester films were treated with oxygen plasma varying the treatment time from 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) varying the percentage of each gas the mixture from 0 to 100%, the treatment time remaining constant to all treatments (10 min). After plasma treatment the samples were characterized by contact angle, surface tension, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, with the aim to study the wettability increase of treated polyester films as its variables. In the (O2/N2) plasma treatment of polyester films can be observed an increase of superficial roughness superior to those treated by O2 plasma. By the other hand, the chemical modification through the implantation of polar groups at the surface is obtained more easily using O2 plasma treatment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oil activity in the Rio Grande do Norte State (RN) is a permanent threat to coastal ecosystems, particularly mangroves, with the possibility of oil spills. In this context, the objective of this study was to evaluate the potential resistance of the mangrove environment of a possible spill. Were selected and isolated microorganisms degrading oil by the technique of enrichment cultures and formation of a bacterial consortium. The kinetic study of the consortium was held in rotary incubator shaken at 150 rpm and 30° C. Samples were taken at intervals of 4 hours for analysis of cell concentration and surface tension. The biodegradation was monitored using two methods of respirometry: manometric (OxiTop-C ®) and conductivimetry, where the biodegradation of oil was estimated indirectly by oxygen consumption and CO2 production, respectively. Furthermore, it was used a full 2² factorial design with triplicate at central point to the runs that used the conductivimetric methodology.. The technique of enrichment cultures allowed to obtain thirteen bacterial strains. Kinetic study of the consortium, we can showed the absence of the lag phase, reaching a maximum cell concentration of 2.55 g / L at 16 h of cultivation and a reduction on surface tension. When we adopted the methodology of OxiTop-C was detected a band indicating biodegradability (1% oil v/v), however when we used the conductivimetry methodology did not observe any band that would indicate effective biodegradation. By monitoring a process of biodegradation is necessary to observe the methodology will be adopted to evaluate the biodegradation process, since for the same conditions adopted different methodologies can produce different results. The oil-degrading isolates from soils of the mangrove estuary Potengi / RN are largely to be used in bioremediation strategies of these places, in the case of a possible oil spill, or it can be used in the treatment of waste oil generated in saline environments, since they are optimized the conditions of the tests so that the efficiency of biodegradation reach the minimum level suggested by the standarts

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, it has been investigated the influence of silver film deposition onto 100% polyester woven and non-woven, on the survival of Escherichia coli and Staphylococcus aureus in contact with these surfaces. The treatment was performedin a chamber containing the working gas at low pressure (~ 10-2 mbar). Some process parameters such as as voltage: 470 V; pressure: 10-2 mbar; current : 0.40 A and gas flow: 6 and 10 cm3/min were kept constant. For the treatments with purêargon plasma using a flow of 6 and 10 cm3/min, different treatment times were evaluated, such as, 10 , 20, 30, 40, 50 and 60 minutes. Contact angle (sessile drop), measurements were used to determine the surface tension of the treated fabrics and its influence on the bacteria grow as weel as the possibilities of a biofilm formation. The formation of a silver film, as well as the amount of this element was verified byEDX technique. The topography was observed through scanning electron microscopy (SEM) to determine the size of silver grains formed on the surfaces of the fabric and assess homogeneity of treatment. The X-ray diffraction (XRD) was used to analyze the structure of silver film deposition. The woven fabric treatments enabled the formation of silver particulate films with particle size larger than the non-woven fabrics. With respect to bacterial growth, all fabrics were shown to be bactericidal for Staphylococcus aureus (S. aureus), while for the Escherichia coli (E. coli), the best results were found for the non-woven fabric (TNT) treated with a flow of 10 cm3/min to both bacteria

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluates the biosurfactants production from cassava wastewater, an agro industrial residue, to be used as carbon source. Using a factorial design 24-1 (half fraction), 10 tests were performed using Pseudomonas aeruginosa AP029/GVII-A in submerged batch cultivation in rotating incubator (shaker). The influence of factors (temperature, agitation, aeration ratio and concentration of cultivation medium) at two different levels for the synthesis of the biosurfactant. Samples were collected throughout the cultivation by 132 hours of fermentation were completed. The best outcome was intended by following production through substrate consumption, dry matter, reduction of surface tension (ring method) and emulsification index. The kinetics of microorganism was assessed for the carbon source used. The results showed that the cassava wastewater is a well assimilable substrate for the production of biotensoactive, reaching 91 % of consumption by the micro-organism under study. The growth temperature was found to be one of the leading factors in the synthesis of the metabolite, followed by aeration and also due to the agitation. The best results showed a 30 % reduction in surface tension (% RTS) for the environment, reaching values of 30 mN/m; 3.0 g /L of biomass and emulsifying index greater than 65 %. The metabolite synthesized still remained stable for different salt concentrations (1, 5 and 10 % w/ v) and alkaline pH (8-10).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Corrosion is an important phenomenon that frequently occurs in the oil industry, causing surface ablation, such as it happens on the internal surfaces of oil pipes. This work aims to obtain new systems to reduce this specific problem. The surfactants SDS, CTAB, and UNITOL L90 (in micellar and microemulsionated systems) were used as corrosion inhibitors. The systems were obtained using a C/S ratio of 2, butanol as cosorfactant, kerosene as oil phase and, as water phase, NaCl solutions of 0.5M with pH = 2, 4, and 7. Microemulsion regions were found both for direct and inverse micelles. SDS had the higher microemulsion region and the area was not dependent of pH. The study of micellization of these surfactans in the liquid-gas interface was carried out via the determination of CMC from surface tension measurements. Regarding microemulsionated systems, in the case of CTAB, CMC increased when pH was increased, being constant for SDS and UNITOL L90. Concerning micellar systems, increase in pH caused decrease and increase in CMC for SDC and CTAB, respectively. In the case of UNITOL L90, CMC was practically constant, but increased for pH = 4. The microemulsionated systems presented higher CMC values, except for UNITOL L90 L90. The negative values of free energy of micellization indicated that the process of adsorption was spontaneous. The results also indicated that, comparing microemulsionated to systems, adsorption was less spontaneous in the case of SDS and CTAB, while it did not change for UNITOL L90. SAXS experiments indicated that micelle geometry was spherical, existing also as halter and flat micelles, resuting in a better inght on the adsorption at the liquid-solid interface. Efficiency of corrosion inhibition as determined by electrochemical measurements, from corrosion currents calculated from Tafel extrapolation indicuting heat showed surfactants to be efficient even at low concentrations. Equilibrium isotherm data were fitted to the Freundlich model, indicating that surfactant adsorption occurs in the form of multilayers

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aims to study the influence of two additives, the monomer, acrylamide and its polymer, polyacrylamide, solubilized in microemulsion systems and applied on enhanced oil recovery. By the microemulsion system obtained, it was chosen points into the phase diagram, presenting these compositions: 25%, 30%, 35% C/T; 2% Fo (fixed for all points) e 73%, 68% e 63% Fa, respectively. However, the monomer and the polymer were solubilized in these microemulsion points with 0.1%; 0.5%; 1% e 2% of concentration, ordering to check the concentration influence at the physicochemical properties (surface tension and rheology) of the microemulsion. Through the salinity study, was possible to observe that the concentrations of 1% and 2% of polymer made the solution became blurred, accordingly, the study of surface tension and rheology only was made for the concentrations of 0.1% e 0.5% of monomer and polymer, respectively. By the surface tension study it was observed that how the concentration of active matter (C/T) was increasing the surface tension was amending for each system, with or without additives. In the rheology study, as it increases the concentration of active matter increases both the viscosity of the microemulsion system (SME) with no additive, as the SME with polymer (AD2). After the entire study, it was chosen the lower point of active matter (25% C/T; 2% Fo e 73% Fa), plus additives in concentrations of 0.1% and 0.5% to be used on enhanced oil recovery. Assays were made on sandstone from Botucatu Formation, where after the tests, it was concluded that among the studied points, the point who showed the best efficiency of advanced shift was the microemulsion system + 0.5% AD2, with a recovery of 28% of oil in place and a total of 96,49%, while the other solution with 0.5% of polymer presented the worst result, with 14.1% of oil in place and 67,39% of efficiency of total displacement

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most of the energy consumed worldwide comes from oil, coal and natural gas. These sources are limited and estimated to be exhausted in the future, therefore, the search for alternative sources of energy is paramount. Currently, there is considerable interest in making trade sustainable biodiesel, a fuel alternative to fossil fuels, due to its renewable nature and environmental benefits of its use in large scale. This trend has led the Brazilian government to establish a program (Probiodiesel) with the aim of introducing biodiesel into the national energy matrix, by addition of 5% biodiesel to conventional diesel in 2010 to foster not only the increase of renewable energy, but reduce imports of crude oil. This work evaluates different methods of extraction of oil Carthamus tinctorius L., their characterization by IR, 1H and 13C NMR, HPLC and TG and their use in the production of methyl ester (molar ratio of oil / alcohol 1:6, and NaOH catalyst). The physico-chemical parameters (acid value, density, viscosity, saponification index and surface tension) of oil and biodiesel were also described. The produced biodiesel had a yield of 93.65%, was characterized in relation to their physicochemical properties showing satisfactory results (density=875 kg/m3, viscosity = 6.22 mm2/s, AI = 0.01 mg (NaOH) /g) compared with the values established by the the National Agency Oil, Natural Gas and Biofuels

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Corrosion is a natural process that causes progressive deterioration of materials, so, reducing the corrosive effects is a major objective of development of scientific studies. In this work, the efficiency of corrosion inhibition on a AISI 1018 carbon steel of the nanoemulsion system containing the oil of the seeds of Azadirachta indica A. Juss (SNEOAI) was evaluated by the techniques of linear polarization resistance (LPR) and weight loss (CPM), a instrumented cell. For that, hydroalcoholic extract of leaves of A. indica (EAI) was solubilized in a nanoemulsion system (SNEOAI) of which O/W system (rich in aqueous phase). This nanoemulsion system (tested in different concentrations) was obtained with oil from the seeds of this plant species (OAI) (oil phase), dodecylammonium chloride (DDAC) (surfactant), butanol (cosurfactant) and water, using 30 % of C/T (cosurfactant/surfactant), 0.5 % of oil phase and 69.5 % of aqueous phase, and characterized by surface tension, rheology and droplet sizes. This systems SNEOAI and SNEOAI-EAI (nanoemulsion containing hydroalcoholic extract - EAI) showed inhibition efficiencies in corrosive environment in saline (1 %), for the method of LPR with significant value of 70.58 % (300 ppm) to SNEOAI, 74.17 % (100 ppm) and 72.51 % (150 ppm) to SNEOAI-EAI. The best efficiencies inhibitions were observed for the method of CPM with 85.41 % for the SNEOAI (300 ppm) and 83.19 % SNEOAI-EAI (500 ppm). The results show that this formulation could be used commercially for use as a corrosion inhibitor, this research contributed to the biotechnological applicability of Azadirachta indica, considering the large use of this plant species rich in limonoids (tetranortriterpenoids), especially azadirachtin

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this research the removal of light and heavy oil from disintegrated limestone was investigated with use of microemulsions. These chemical systems were composed by surfactant, cosurfactant, oil phase and aqueous phase. In the studied systems, three points in the water -rich microemulsion region of the phase diagrams were used in oil removal experiments. These microemulsion systems were characterized to evaluate the influence of particle size, surface tension, density and viscosity in micellar stability and to understand how the physical properties can influence the oil recovery process. The limestone rock sample was characterized by thermogravimetry, BET area, scanning electron microscopy and X-ray fluorescence. After preparation, the rock was placed in contact with light and heavy oil solutions to allow oil adsorption. The removal tests were performed to evaluate the influence of contact time (1 minute, 30 minutes, 60 minutes and 120 minutes), the concentration of active matter (20, 30 and 40 %), different cosurfactants and different oil phases. For the heavy oil, the best result was on SME 1, with 20 % of active matter, 1 minute of contact time, with efficiency of 93,33 %. For the light oil, also the SME 1, with 20 % of active matter, 120 minutes of contact time, with 62,38 % of efficiency. From the obtained results, it was possible to conclude that microemulsions can be considered as efficient chemical systems for oil removal from limestone formations

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alkyl polyethoxylates are surfactants widely used in vastly different fields, from oil exploitation to pharmaceutical applications. One of the most interesting characteristics of these surfactants is their ability to form micellar systems with specific geometry, the so-called wormlike micelle. In this work, microemulsions with three distinct compositions (C/T = 40 %, 30 % and 25 %) was used with contain UNITOL / butanol / water / xylene, cosurfactant / surfactante (C/S) ratio equal to 0,5. The microemulsion was characterized by dynamic light scattering (DLS), capillary viscometry, torque rheometry and surface tensiometry experiments carried out with systems based on xylene, water, butanol (cosurfactant) and nonaethyleneglycolmonododecyl ether (surfactant), with fixed surfactant:cosurfactant:oil composition (with and without oil phase) and varying the overall concentration of the microemulsion. The results showed that a transition from wormlike micelles to nanodrops was characterized by maximum relative viscosity (depending on how relative viscosity was defined), which was connected to maximum effective diameter, determined by DLS. Surface tension suggested that adsorption at the air water interface had a Langmuir character and that the limiting value of the surfactant surface excess was independent of the presence of cosurfactant and xylene. The results of the solubilization of oil sludge and oil recovery with the microemulsion: C/S = 40%, 30% and 25% proved to be quite effective in solubilization of oil sludge, with the percentage of solubilization (%solubilization) as high as 92.37% and enhanced oil recovery rates up to 90.22% for the point with the highest concentration of active material (surfactant), that is, 40%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The environmental impact due to the improper disposal of metal-bearing industrial effluents imposes the need of wastewater treatment, since heavy metals are nonbiodegradable and hazardous substances that may cause undesirable effects to humans and the environment. The use of microemulsion systems for the extraction of metal ions from wastewaters is effective when it occurs in a Winsor II (WII) domain, where a microemulsion phase is in equilibrium with an aqueous phase in excess. However, the microemulsion phase formed in this system has a higher amount of active matter when compared to a WIII system (microemulsion in equilibrium with aqueous and oil phases both in excess). This was the reason to develop a comparative study to evaluate the efficiency of two-phases and three-phases microemulsion systems (WII and WIII) in the extraction of Cu+2 and Ni+2 from aqueous solutions. The systems were composed by: saponified coconut oil (SCO) as surfactant, n-Butanol as cosurfactant, kerosene as oil phase, and synthetic solutions of CuSO4.5H2O and NiSO4.6H2O, with 2 wt.% NaCl, as aqueous phase. Pseudoternary phase diagrams were obtained and the systems were characterized by using surface tension measurements, particle size determination and scanning electron microscopy (SEM). The concentrations of metal ions before and after extraction were determined by atomic absorption spectrometry. The extraction study of Cu+2 and Ni+2 in the WIII domain contributed to a better understanding of microemulsion extraction, elucidating the various behaviors presented in the literature for these systems. Furthermore, since WIII systems presented high extraction efficiencies, similar to the ones presented by Winsor II systems, they represented an economic and technological advantage in heavy metal extraction due to a small amount of surfactant and cosurfactant used in the process and also due to the formation of a reduced volume of aqueous phase, with high concentration of metal. Considering the reextraction process, it was observed that WIII system is more effective because it is performed in the oil phase, unlike reextraction in WII, which is performed in the aqueous phase. The presence of the metalsurfactant complex in the oil phase makes possible to regenerate only the surfactant present in the organic phase, and not all the surfactant in the process, as in WII system. This fact allows the reuse of the microemulsion phase in a new extraction process, reducing the costs with surfactant regeneration

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The process of adsorption and micellization of the surfactants sodium dodecyl sulfate, dodecylammonium chloride and hexaethylene glycol mono-n-dodecyl ether in water-air interface has been studied using measurements of surface tension in aqueous media and NaCl 0.1 mol/L in temperatures of 25, 33 and 40 °C. From these data, critical micelle concentrations and thermodynamic parameters of micellization and adsorption were determined in order to elucidate the behaviors of micellization and adsorption for these surfactants in the proposed medium. For the determination of the thermodynamic parameters of adsorption we utilized the equations of isotherms of Langmuir and Gibbs. Γmáx values determined by the different equations were correlated to the explanation of results. Temperature and salinity were analyzed in terms of their influence on the micellization and adsorption process, and the results were explained based on intermolecular interactions. The values of Gmic have confirmed that the micelle formation for the surfactants studied occurs spontaneously