5 resultados para Surface Gravity-waves
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this thesis, we study the application of spectral representations to the solution of problems in seismic exploration, the synthesis of fractal surfaces and the identification of correlations between one-dimensional signals. We apply a new approach, called Wavelet Coherency, to the study of stratigraphic correlation in well log signals, as an attempt to identify layers from the same geological formation, showing that the representation in wavelet space, with introduction of scale domain, can facilitate the process of comparing patterns in geophysical signals. We have introduced a new model for the generation of anisotropic fractional brownian surfaces based on curvelet transform, a new multiscale tool which can be seen as a generalization of the wavelet transform to include the direction component in multidimensional spaces. We have tested our model with a modified version of the Directional Average Method (DAM) to evaluate the anisotropy of fractional brownian surfaces. We also used the directional behavior of the curvelets to attack an important problem in seismic exploration: the atenuation of the ground roll, present in seismograms as a result of surface Rayleigh waves. The techniques employed are effective, leading to sparse representation of the signals, and, consequently, to good resolutions
Resumo:
The gravity inversion method is a mathematic process that can be used to estimate the basement relief of a sedimentary basin. However, the inverse problem in potential-field methods has neither a unique nor a stable solution, so additional information (other than gravity measurements) must be supplied by the interpreter to transform this problem into a well-posed one. This dissertation presents the application of a gravity inversion method to estimate the basement relief of the onshore Potiguar Basin. The density contrast between sediments and basament is assumed to be known and constant. The proposed methodology consists of discretizing the sedimentary layer into a grid of rectangular juxtaposed prisms whose thicknesses correspond to the depth to basement which is the parameter to be estimated. To stabilize the inversion I introduce constraints in accordance with the known geologic information. The method minimizes an objective function of the model that requires not only the model to be smooth and close to the seismic-derived model, which is used as a reference model, but also to honor well-log constraints. The latter are introduced through the use of logarithmic barrier terms in the objective function. The inversion process was applied in order to simulate different phases during the exploration development of a basin. The methodology consisted in applying the gravity inversion in distinct scenarios: the first one used only gravity data and a plain reference model; the second scenario was divided in two cases, we incorporated either borehole logs information or seismic model into the process. Finally I incorporated the basement depth generated by seismic interpretation into the inversion as a reference model and imposed depth constraint from boreholes using the primal logarithmic barrier method. As a result, the estimation of the basement relief in every scenario has satisfactorily reproduced the basin framework, and the incorporation of the constraints led to improve depth basement definition. The joint use of surface gravity data, seismic imaging and borehole logging information makes the process more robust and allows an improvement in the estimate, providing a result closer to the actual basement relief. In addition, I would like to remark that the result obtained in the first scenario already has provided a very coherent basement relief when compared to the known basin framework. This is significant information, when comparing the differences in the costs and environment impact related to gravimetric and seismic surveys and also the well drillings
Resumo:
Microseisms are continuous vibrations pervasively recorded in the mili Hertz to 1 Hz frequency range. These vibrations are mostly composed of Rayleigh waves and are strongest in the 0.04 to 1 Hz frequency band. Their precise source mechanisms are still a matter of debate but it is agreed that they are related to atmospheric perturbations and ocean gravity waves. The Saint Peter Saint Paul Archipelago (SPSPA) is located in the equatorial region of the Atlantic Ocean about 1,100 km distant from the Brazilian northeastern coast. The SPSPA is composed by a set of several small rocky formations with a total area of approximately 17,000 m². Due to its remote distance from the continent and the lack of cultural noise, this location is a unique location for measuring microseismic noise and to investigate its relation with some climate and oceanographic variables. In the SPSPA we have recorded both primary microseisms (PM) at 0.04 – 0.12 Hz and the secondary microseisms (SM) at 0.12 – 0.4 Hz during 10 months in 2012 and 2013. Our analysis indicates a good correlation between the microseismic noise in the region and a seasonal dependency. In particular, the winter in the northern hemisphere. We have also shown that most of the PM is generated in the SPSPA itself. The SM source location depends with the seasonal climatic and oceanographic variables in the northern hemisphere
Resumo:
The Ionospheric Disturbances – TIDs – are irregularities on the ionospheric plasma propagating in speeds in the order of tens to a few hundreds of meters per second. This present study detected and characterized the TIDs of LSTIDs (Large Scale Travelling Ionospheric Disturbance) type at low latitudes during intense geomagnetic storms and its propagation over the Brazilian sector. This work also shows as being the first to report systematically propagation of gravity waves over Natal. For this purpose, we used ionospheric records obtained from type of digisonde CADI (Canadiam Advanced Digital Ionosonde) located in Natal and the type DSP (Digisonde Portable Souder) located in Cachoeira Paulista, Fortaleza and São Luis, whereupon we used a dataset of 12 years collected by INPE (National Institute of Space Research). In this study, both calm days, that preceded the storms, and the geomagnetically disturbed days were related during the years 2000 and 1012, which cover a period of maximum and minimum solar activity. And it is presented the variations that happened in the electron density from region F of the ionosphere over the Brazilian sector, especially near the Equator (Natal, Fortaleza and São Luis), caused by ionospheric disturbances in the equatorial region during intense geomagnetic storms, because, as we know of the literature in this area, this phenomenon contributes positively to the emergence of LSTIDs in the auroral region, which may move to the equatorial region where a few cases have been documented and studied systematically. From the observation of signatures if TIDs in ionogram records, a study of the morphology of these events was performed and compared with the main characteristics of the wave of this phenomenon during great magnetic storms, i.e., DST <(-200 nT) and KP > 6. Thus, we obtained the main characteristics of TIDs over our region, i.e., period, vertical wavelength, phase and propagation speed, as well as the delay of these disturbances compared to the beginning of the magnetic storms to the Brazilian Sector.
Resumo:
The Borborema Province, Northeastern Brazil, had its internal structure investigated by different geophysical methods like gravity, magnetics and seismics. Additionally, many geological studies were also carried out to define the structural domains of this province. Despite the plethora of studies, there are still many important open aspects about its evolution. Here, we study the velocity structure of S-wave in the crust using dispersion of surface waves. The dispersion of surface waves allows an estimate of the average thickness of the crust across the region between the stations. The inversion of the velocity structure was carried out using the inter-station dispersion of surface waves of Rayleigh and Love types. The teleseismic events are mainly from the edges of the South and North American plates. The period of data collection occurred between 2007 and 2010 and we selected 7 events with magnitude above 5.0 MW and up to 40 km depth. The difference between the events back-azimuths and the interstation path was not greater than 10. We also know the depth of the Moho, results from Receiver Functions (Novo Barbosa, 2008), and use those as constrains in inversion. Even using different parameterizations of models for the inversion, our results were very similar the mean profiles velocity structure of S-wave. In pairs of stations located in the Cear´a Central Domain Borborema the province, there are ranges of depths for which the velocities of S are very close. Most of the results in the profile near the Moho complicate their interpretation at that depth, coinciding with the geology of the region, where there are many shear zones. In particular, the profile that have the route Potiguar Bacia in inter-station, had low velocities in the crust. We combine these results to the results of gravimetry and magnetometry (Oliveira, 2008) and receptor function (Novo Barbosa, 2008). We finally, the first results on the behavior of the velocity structure of S-wave with depth in the Province Borborema