11 resultados para Superficial velocity
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
A critical problem in mature gas wells is the liquid loading. As the reservoir pressure decreases, gas superficial velocities decreases and the drag exerted on the liquid phase may become insufficient to bring all the liquid to the surface. Liquid starts to drain downward, flooding the well and increasing the backpressure which decreases the gas superficial velocity and so on. A popular method to remedy this problem is the Plunger Lift. This method consists of dropping the "plunger"to the bottom of the tubing well with the main production valve closed. When the plunger reaches the well bottom the production valve is opened and the plunger carry the liquid to the surface. However, models presented in literature for predicting the behavior in plunger lift are simplistic, in many cases static (not considering the transient effects). Therefore work presents the development and validation of a numerical algorithm to solve one-dimensional compressible in gas wells using the Finite Volume Method and PRIME techniques for treating coupling of pressure and velocity fields. The code will be then used to develop a dynamic model for the plunger lift which includes the transient compressible flow within the well
Resumo:
Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature
Resumo:
Among the many types of noise observed in seismic land acquisition there is one produced by surface waves called Ground Roll that is a particular type of Rayleigh wave which characteristics are high amplitude, low frequency and low velocity (generating a cone with high dip). Ground roll contaminates the relevant signals and can mask the relevant information, carried by waves scattered in deeper regions of the geological layers. In this thesis, we will present a method that attenuates the ground roll. The technique consists in to decompose the seismogram in a basis of curvelet functions that are localized in time, in frequency, and also, incorporate an angular orientation. These characteristics allow to construct a curvelet filter that takes in consideration the localization of denoise in scales, times and angles in the seismogram. The method was tested with real data and the results were very good
Resumo:
Among the many types of noise observed in seismic land acquisition there is one produced by surface waves called Ground Roll that is a particular type of Rayleigh wave which characteristics are high amplitude, low frequency and low velocity (generating a cone with high dip). Ground roll contaminates the relevant signals and can mask the relevant information, carried by waves scattered in deeper regions of the geological layers. In this thesis, we will present a method that attenuates the ground roll. The technique consists in to decompose the seismogram in a basis of curvelet functions that are localized in time, in frequency, and also, incorporate an angular orientation. These characteristics allow to construct a curvelet filter that takes in consideration the localization of denoise in scales, times and angles in the seismogram. The method was tested with real data and the results were very good
Resumo:
A polyester film has a vast application field, due some properties that are inherent of this kind of material such as, good mechanical resistance, chemical resistance to acids and bases and low production cost. However, this material has some limitations as low superficial tension, flat surface, low affinity to dyers, and poor adhesion which impede the use of the same ones for some finality as good wettability. Among the existent techniques to increase the superficial tension, plasma as energy source is the more promising technique, because of their versatility and for not polluting the environment. The plasma surface polymeric modification has been used for many researchers, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, polyester films were treated with oxygen plasma varying the treatment time from 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) varying the percentage of each gas the mixture from 0 to 100%, the treatment time remaining constant to all treatments (10 min). After plasma treatment the samples were characterized by contact angle, surface tension, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, with the aim to study the wettability increase of treated polyester films as its variables. In the (O2/N2) plasma treatment of polyester films can be observed an increase of superficial roughness superior to those treated by O2 plasma. By the other hand, the chemical modification through the implantation of polar groups at the surface is obtained more easily using O2 plasma treatment
Resumo:
The addition of active silica potentially improves the quality of concrete due to its high reactivity and pore refinement effect. The reactivity of silica is likely related to its charge density. Variations in surface charge alter the reactivity of the material consequently affecting the properties of concrete. The present study aimed at investigating variations in the charge density of silica as a function of acid treatments using nitric or phosphoric acid and different pH values (2.0, 4.0 and 6.0). Effects on concrete properties including slump, mechanical strength, permeability and chloride corrosion were evaluated. To that end, a statistical analysis was carried out and empirical models that correlate studied parameters (pH, acid and cement) with concrete properties were established. The quality of the models was tested by variance analysis. The results revealed that the addition of silica was efficiency in improving the properties of concrete, especially the electrochemical parameters. The addition of silica treated using nitric acid at pH = 4.0 displayed the best cement performance including highest strength, reduced permeability and lowest corrosion current
Resumo:
Metal ceramic restorations matches aesthetic and strength, and in your making occurs an interface oxide layer, wetting resulting and atomic and ionic interactions resulting between metal, oxide and porcelain. However, frequent clinical fails occurs in this restoration type, because lost homogeneous deposition oxide layer and lost interface bond. Thus, in this study, thought depositate homogeneous oxide films above Ni-Cr samples surfaces polite previously, at plasma oxide environment. Six samples was oxided at 300 and 400ºC at one hour, and two samples was oxided in a comum chamber at 900ºC, and then were characterized: optical microscopic, electronic microscopic, micro hardness, and X ray difratometry. Colors stripes were observed at six samples plasma oxided and a grey surface those comum oxided, thus like: hardness increase, and several oxides from basic metals (Ni-Cr)
Resumo:
The 100% cotton fabric (CO)* treated with plasma of methane CH4 has direct application in all areas that needs of aqueous solutions repellent material like coatings and uniforms applied biomedical, aeronautics, and automobile between others. 100% cotton fabric (CO) samples were treated by plasma with two differents atmosphere: Methane gas (CH4), treatment time was varied in 10 in 10 min. until 60 min., and mixture methane/argon (CH4/Ar), it was varied the proportion 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2 e 9:1, with treatment time of 30 minutes. In both, the fluxe was 5 sccm (second cubic centimeter), pressure 6 mbar, voltage 490 V and current 0,15A. The objective of work was measure the superficial tension of 100% CO then it treated with plasma, using contact angle measures of water and glycerol with the surface. The samples were tested after treatment, with 8 and 12 months to verify the superficial modification effects. It was verified an increase of hydrophobility with the Sessile drop values varied between 116,69º to 137,85º and it carried on after 12 months. The no treated samples shows contact angle equal 0º. OES analysis and Raman spectroscopy were accomplished. In the SEM analysis was verified oligomers. The plasma treatment is correct environmental, It turning greater than conventional treatments
Resumo:
Some fibrous materials, for having properties such as biocompatibility, strength and flexibility, are of great interest for medical and pharmaceutical applications. Among these materials, the fabric made from polylactic acid (PLA) has received special attention, and beside to present these features, is derived from biological source, antimicrobial and bioabsorbable. One of the limitations of PLA is its low wettability and capillarity. Due to this, it is necessary to perform surface modification of the knitted fabric, increasing its hydrophilicity. This work aims to realize the plasma treatment at low pressure in order to increase the surface energy of the polymer. The work was divided into three steps: i) Influence of the gas ratio (oxygen and nitrogen) in the surface modification of PLA fabric after the plasma treatment, ii) physical characterization and physicochemical surface tissue; iii) Evaluation of the effect from current and gas ratio in the capillary rise of tissues and iv) Study of capillarity in yarns and fabrics. The results showed that better gas ratios were the atmospheres: 100% oxygen; 100% nitrogen and 50% oxygen and 50% nitrogen. The surface characterization showed changes in topography and introduction of polar groups which increased the wettability of the fabric. In another part of this study, it was found that the atmosphere containing only nitrogen gas showed the most capillary rise to a current of 0.15 A. The results in capillary yarns and fabrics showed that the thread reached equilibrium in a time much less than the fabric to an atmosphere of 100% nitrogen and 0.15 A. Current Plasma technology was effective to increase the hydrophilicity of PLA fabric, providing surface characteristics favorable for future application in the biomedical field
Resumo:
The urban drainage is one of the powers of environmental sanitation and its scope is the quantitative and qualitative aspects. In decision making of managers and the engineering aspects of design are almost always taken into account only the quantitative aspects. However, the waters of the runoff have the highest concentrations of pollutants at the beginning of precipitation. Thus, if the plot pollution removed, the remaining portion can be used for other purposes. This work has aimed to present the variation of water quality of two drainage basins in the city of Natal / RN-Brazil to support the implementation of drainage to consider the qualitative aspect, and identify potential for the use of water. The basins (M and C) are analyzed closed-type, are in the urban area, are predominantly residential occupation and its waters are used for detention ponds and infiltration. The samples were divided into three phases, the first two direct to final points in a basin and the third in traps distributed over the surface drainage. The parameters had been analyzed were pH, conductivity, dissolved oxygen, Color, Turbidity, COD, Ammonia, nitrite, nitrate, total phosphorus, orthophosphate, Sediments solids, total solids, chloride, sulfate, alkalinity, calcium, magnesium, sodium, potassium, Heavy Metals (Chromium, Cadmium, Lead, Zinc and Copper), Eschichia coli and total coliforms. The parameters studied showed high initial pollution load, events and located in different proportions, except nitrite, heavy metals and biological indicators. The size of the surface drainage and topographic its features influence the quality of water. However, the form of sampling is crucial in the qualitative study in the basin. The samplers developed at work, were generated economic and representative results. The urban rainwater presents organic faecal indicators. The runoff of water from both basins shows no risk of salinity and sodicity for use in irrigation, should be noted the content of chloride in the choice of method of irrigation
Resumo:
One of the best established properties of the single late type evolved stars is that their rotational velocity and lithium content decrease with effective temperature and age. Nevertheless, the root cause of this property, as well as the link between rotation and lithium abundance and, in particular, the effects of binarity on rotation and lithium content in binary systems with evolved component, are not yet completely established. How does the gravitational tides, in binary systems, affects rotational evolution and lithium dilution? Trying to answer these questions, we have carried out an observational survey, in the lithium region centered at the lithium I line A6707.81A, for a large sample of about 100 binary systems with evolved component along the spectral range F, G and K, with the CES spectrometer mounted at the CAT 1.44 m Telescope of the ESO, La Silla, Chile. By combining the abundances of lithium issued from these observations with rotational velocity and orbital parameters, we have found a number of important results. First of all, we confirm that in this class of binary systems rotation is effectively affected by tidal effects. Binary systems with orbital period lower than about 100 days and circular or nearly circular orbits, present rotational velocity enhanced in relation to the single giant stars and to the binary systems with an orbital period larger than 100 days. This is clearly the result of the synchonization between the rotational and orbital motions due to tidal effects. In addition, we have found that lithium abundances in binary systems with giant components present the same gradual decreasing with effective temperature, observed in the single giants of same luminosity class and spectral types. We have found no lithium-rich binary systems, in contrast with single giants. A remarkable result from the present study is the one showing that synchronized binary systems with giant component retains more of their original lithium than the unsynchronized systems. In fact, we have found a possible "inhibited zone", in which synchronized binary systems with giant component having lithium abundance lower than a threshold level should be unusual. Finally, the present study also shows that the binary systems with giant component presenting the highest lithium contents are those with the highest rotation rates