3 resultados para Subterranean Clover
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Activities that have fuel subterranean storage system are considered potentially polluting fuels by CONAMA Resolution 273, due to the possibility of leak, outpouring and overflow of fuel into the ground. Being even more worrying when contaminate groundwater for public supply, as the case of Natal City. For this reason, the Public Ministry/RN, in partnership with UFRN, developed the project environmental suitability of Gas stations in Natal, of which 36% showed evidence of contamination. This paper describes the four stages of the management of contaminated areas: preliminary assessment of environmental liabilities, detailed confirmatory investigation of the contamination, risk analysis to human health (RBCA), as well as the remediation plan of degraded areas. Therefore it is presented a case study. For the area investigated has been proposed a mathematical method to estimate the volume of LNAPL by a free CAD software (ScketchUp) and compare it with the partition method for grid area. Were also performed 3D graphics designs of feathers contamination. Research results showed that passive benzene contamination in groundwater was 2791.77 μg/L, when the maximum allowed by CONAMA Resolution 420 is 5 μg/L which is the potability standards. The individual and cumulative risks were calculated from 4.4 x10-3, both above the limits of 1.0 x10-5 or by RBCA 1.0 x10-6 by the Public Ministry/RN. Corrective action points that remediation of dissolved phase benzene is expected to reach a concentration of 25 μg/L, based on carcinogenic risk for ingestion of groundwater by residents residential, diverging legislation. According to the proposed model, the volume of LNAPL using the ScketchUp was 17.59 m3, while by the grid partitioning method was 14.02 m3. Because of the low recovery, the expected removal of LNAPL is 11 years, if the multiphase extraction system installed in the enterprise is not optimized
Resumo:
It is estimated that the Brazilian karst areas sum about 200.000 km2. The caves, one of the main components of karst, are important windows into the biological studies on hypogean environments. In Rio Grande do Norte are known 563 caves, and 476 of them are in the municipalities of Baraúna, Felipe Guerra, Governador Dix-Sept Rosado, Apodi and Mossoró, the Western region of the State. However, like in the rest of the country, the cave fauna of the State is still poorly understood. This study used data from invertebrates harvested in 47 caves and aimed to analyze the effect of environmental change between the dry and rainy seasons in the communities of cave invertebrates, characterize these communities and evaluate the relationships between morphological and biotic variables of the caves and surroundings, and to define priority areas for conservation of cave environments of the study area from biotic parameters. Strong effects were found in the community structure of cave invertebrates due environmental changes between seasons, with values of total richness, abundance, diversity and ecological complexity significantly higher in the rainy season. It was possible to assess how the morphology of the cave and the external environment variables affect the biotic system, so that the variety of resources, forest cover in the vicinity, the area of the cave and its entrance were the variables that best explained the structure communities of cave invertebrates in the region. High values of total richness of invertebrates (36,62 ± 14,04 spp / cave) and troglomorphic species (61 species, mean 1,77 ± 2,34 spp / cave) were found and, given the biological relevance in the context of the area national and the imminent anthropogenic pressures existing, we defined four priority areas for actions aiming cave biodiversity conservation in the region.
Resumo:
Activities that have fuel subterranean storage system are considered potentially polluting fuels by CONAMA Resolution 273, due to the possibility of leak, outpouring and overflow of fuel into the ground. Being even more worrying when contaminate groundwater for public supply, as the case of Natal City. For this reason, the Public Ministry/RN, in partnership with UFRN, developed the project environmental suitability of Gas stations in Natal, of which 36% showed evidence of contamination. This paper describes the four stages of the management of contaminated areas: preliminary assessment of environmental liabilities, detailed confirmatory investigation of the contamination, risk analysis to human health (RBCA), as well as the remediation plan of degraded areas. Therefore it is presented a case study. For the area investigated has been proposed a mathematical method to estimate the volume of LNAPL by a free CAD software (ScketchUp) and compare it with the partition method for grid area. Were also performed 3D graphics designs of feathers contamination. Research results showed that passive benzene contamination in groundwater was 2791.77 μg/L, when the maximum allowed by CONAMA Resolution 420 is 5 μg/L which is the potability standards. The individual and cumulative risks were calculated from 4.4 x10-3, both above the limits of 1.0 x10-5 or by RBCA 1.0 x10-6 by the Public Ministry/RN. Corrective action points that remediation of dissolved phase benzene is expected to reach a concentration of 25 μg/L, based on carcinogenic risk for ingestion of groundwater by residents residential, diverging legislation. According to the proposed model, the volume of LNAPL using the ScketchUp was 17.59 m3, while by the grid partitioning method was 14.02 m3. Because of the low recovery, the expected removal of LNAPL is 11 years, if the multiphase extraction system installed in the enterprise is not optimized