6 resultados para Stress strain tests
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Since the 1980s, different devices based on superelastic alloys have been developed to fulfill orthodontic applications. Particularly in the last decades several researches have been carried out to evaluate the mechanical behavior of Ni-Ti alloys, including their tensile, torsion and fatigue properties. However, studies regarding the dependence of elastic properties on residence time of Ni-Ti wires in the oral cavity are scarce. Such approach is essential since metallic alloys are submitted to mechanical stresses during orthodontic treatment as well as pH and temperature fluctuations. The goal of the present contribution is to provide elastic stress-strain results to guide the orthodontic choice between martensitic thermal activated and austenitic superelastic Ni-Ti alloys. From the point of view of an orthodontist, the selection of appropriate materials and the correct maintenance of the orthodontic apparatus are essential needs during clinical treatment. The present work evaluated the elastic behavior of Ni-Ti alloy wires with diameters varying from 0.014 to 0.020 inches, submitted to hysteresis tensile tests with 8% strain. Tensile tests were performed after periods of use of 1, 2 and 3 months in the oral cavity of patients submitted to orthodontic treatment. The results from the hysteresis tests allowed to exam the strain range covered by isostress lines upon loading and unloading, as well as the residual strain after unloading for both superelastic and thermal activated Ni-Ti wires. Superelastic Ni-Ti wires exhibited higher load isostress values compared to thermal activated wires. It was found that such differences in the load isostress values can increase with increasing residence time.
Resumo:
Soil improved with the addition of cement have been utilized as an alternative to the construction of various types of geotechnical works, almost always present economic and environmental advantages. This paper presents a study on the usage of cement in the improvement of mechanical properties of sandy soils, characteristic of the region of Natal, collected from its dunes. This research was made in order to analyze the influence of cement content, voids, and also including water immersion and confining pressure. Samples molded from cement-soil mixtures were tested for unconfined compression tests and triaxial tests. The samples had the percentage of cement mixed in 2.5%, 5% and 10% by weight. The cement agent used was the Portland Cement of High Early strength(CPV-ARI), which promoted agility to the experimental procedure for presenting a rapid gain in strenght. The void ratio used ranged from 0.7 (more compact), 0,9 and 1,1(softer). The soil under study can be considered as pure sand. In general, it can be stated that the larger the amount of cement added to the sand studied is, the greater ultimate strength will be. Likewise, as more compact the soil is, the less void ratio and more resistant it will be present. The confining pressure tends to increase the resistance of the specimens. The cementing adopted grades showed that the use of different criteria for failure did not significantly alter the stress-strain parameters for the sand studied. The angle of friction values were found within the typical range of medium and compact sands. Cementing acted in the sand providing an intercepted cohesion which increased enhancing the potential cementation. In triaxial compression tests, the sand with void ratio is equal to 0.7 and showed the expected behavior for a compact sand while the stress-strain behavior of the same sand with the void ratio of 0.9 tended to be expected for the soft sand as well
Resumo:
The present work consists in the analysis of tribologycal properties of basic and multifunctional knitted fabrics. This knowledge has fundamental importance for the textile industry since it can quantify, in an objective way, the tactil. The fabrics used were characterized by friction and mechanical tests for determining the viscoelastic region, wear resistance and friction coefficient of the fabrics used. The stress-strain curve was obtained by the method Kawabata, KES-FB1. Wear tests performed with the aid of equipment Martindale. The measurement of friction coefficient, two methods were used and analyzed comparatively. The first was a method already established worldwide known as KES-FB4 and the second was an innovative method called FRICTORQ, developed by the University of Minho. These two methods were compared taking into account the relative motion between the tribologycal pairs are different from each method. While the first motion is translational, the second is rotational. It was formal that the knitted had a multifunctional fabrics tribologycal performance which was better than the basic knitted fabrics, as the viscoelastic region, was laager highlighting a multifunctional structure, with greater wear resistance mainly on the back side of the knitted fabrics and lower friction coefficient. Performing a comparative analysis between two methods used to measure the friction coefficient, it was formal that both methods were consistent in terms of results. In operational terms, the FRICTORQ showed ease of operation and increased reproducibility of results
Resumo:
Since the 1980s, different devices based on superelastic alloys have been developed to fulfill orthodontic applications. Particularly in the last decades several researches have been carried out to evaluate the mechanical behavior of Ni-Ti alloys, including their tensile, torsion and fatigue properties. However, studies regarding the dependence of elastic properties on residence time of Ni-Ti wires in the oral cavity are scarce. Such approach is essential since metallic alloys are submitted to mechanical stresses during orthodontic treatment as well as pH and temperature fluctuations. The goal of the present contribution is to provide elastic stress-strain results to guide the orthodontic choice between martensitic thermal activated and austenitic superelastic Ni-Ti alloys. From the point of view of an orthodontist, the selection of appropriate materials and the correct maintenance of the orthodontic apparatus are essential needs during clinical treatment. The present work evaluated the elastic behavior of Ni-Ti alloy wires with diameters varying from 0.014 to 0.020 inches, submitted to hysteresis tensile tests with 8% strain. Tensile tests were performed after periods of use of 1, 2 and 3 months in the oral cavity of patients submitted to orthodontic treatment. The results from the hysteresis tests allowed to exam the strain range covered by isostress lines upon loading and unloading, as well as the residual strain after unloading for both superelastic and thermal activated Ni-Ti wires. Superelastic Ni-Ti wires exhibited higher load isostress values compared to thermal activated wires. It was found that such differences in the load isostress values can increase with increasing residence time.
Resumo:
Malaria is a major parasitic disease worldwide, accounting for about 500 million cases and causing 2 million to 3 million deaths annually. Four species are responsible for transmitting this disease to humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale. The parasite resistance to antimalarial drugs and the usual limitations of the vector control implications are contributing to the spread of the disease. The most of significant advances in the search for new antimalarial drugs is based on natural components, the main ones being currently used antimalarial drugs derived from plants. Research on natural products of marine origin (particularly algae) show that some species possess antiplasmodial activity. Knowing that the coast of Rio Grande do Norte is home to several species of algae, the present study was to evaluate, for the first time, the antimalarial activity of ethanolic extracts of seaweed Spatoglossum schroederi, Gracilaria birdiae and Udotea flabellum against Plasmodium falciparum 3D7 strain tests and in vitro using the murine model (Plasmodium berghei) for evaluation in vivo. These species were ground, macerated with ethanol for 24 hours and the extracts concentrated in rotaevaporador (45 ° C ± 5 ° C). For in vitro tests, the extracts were diluted and tested at concentrations between 100 and 1.56 μg/ml (seven concentrations in triplicate), in order to obtain IC50 of each extract. The cytotoxicity tests with macrophages and BGM were performed using the MTT colorimetric assay. BGM macrophages and cells were distributed in 96 wells per plate (1x 105 to macrophages and 1x104 cells per well for BGM) and incubated for 24h at 37 ° C. The ethanol extracts were diluted and tested at concentrations of 100 to 1,56 μg/ml (seven concentrations in triplicate). After periods of 24 hours of incubation with the extracts, 100 μg of MTT was added to each well, and 3 hours elapsed, the supernatant was removed and added 200 μl of DMSO in each well. The absorbance of each well was obtained by reading on a spectrophotometer at 570 nm filter. To evaluate the acute toxicity in vivo, Swiss mice received a single dose (oral) 2000 mg/kg/animal of each extract tested. The parameters of acute toxicity were observed for 8 days. For in vivo tests, Swiss mice were inoculated with 1x105 erythrocytes infected with P. berghei. The treatment was given first to fourth day after infection with 0.2 ml of the extracts in doses of 1000 and 500 mg//g animal. The negative control group received 0.2 ml of 2% Tween-20, whereas the positive control group received sub-dose of chloroquine (5 mg/kg/animal). The assessment of antimalarial activity was done by suppressing suppressing the parasitemia at 5 and 7 days after infection. The growth inhibition of parasites was determined relative to negative control (% inhibition = parasitaemia in control - parasitemia in sample / parasitemia control x 100), the mortality of animals was monitored daily for 30 days The results showed that algae Spatoglossum schroederi and Udotea flabellum showed antimalarial activity in vitro, with reduced parasitemia of 70.54% and 54, respectively. The extracts of the three algae tested showed moderate to high cytotoxicity. Algae S. schroederi and U. flabellum were active against P. berghei only at doses of 500 mg / kg with reduction ranging from 54.58 to 52.65% for the fifth day and from 32.24 to 47.34% for the seventh day, respectively. No toxicity was observed in vivo at the dose tested, over the 8 days of observation. Although preliminary data, the bioactive components in those possible seaweed may be promising for the development of new anti-malarial drugs
Resumo:
In States of Paraíba (PB) and Rio Grande do Norte (RN), northeast of Brazil, the most significant deposits of non-metallic industrial minerals are pegmatites, quartzites and granites, which are located in Seridó region. Extraction of clay, quartz, micas and feldspars occurs mainly in the cities of Várzea (PB), OuroBranco (RN) and Parelhas (RN). Mining companies working in the extraction and processing of quartzite generate large volumes of waste containing about 90% SiO2 in their chemical composition coming from quartz that is one of the basic constituents of ceramic mass for the production of ceramic coating. Therefore, this work evaluates the utilization of these wastes on fabrication of high-quality ceramic products, such as porcelain stoneware, in industrial scale. Characterization of raw materials was based on XRF, XRD, GA, TGA and DSC analysis, on samples composed by 57% of feldspar, 37% of argil and 6% of quartzite residues, with 5 different colors (white, gold, pink, green and black). Samples were synthesized in three temperatures, 1150°C, 1200°C and 1250°C, with one hour isotherm and warming-up tax of 10°C/min. After synthesizing, the specimens were submit to physical characterization tests of water absorption, linear shrinkage, apparently porosity, density, flexural strain at three points. The addition of 6% of quartzite residue to ceramic mass provided a final product with technological properties attending technical norms for the production of porcelain stoneware; best results were observed at a temperature of 1200°C. According to the results there was a high iron oxide on black quartzite, being their use in porcelain stoneware discarded by ethic and structural question, because the material fused at 1250°C. All quartzite formulations had low water absorption when synthesized at 1200°C, getting 0.1% to 0.36% without having gone through the atomization process. Besides, flexural strain tests overcame 27 MPa reaching the acceptance limits of the European Directive EN 100, at 1200°C synthesizing. Thus, the use of quartzite residues in ceramic masses poses as great potential for the production of porcelain stoneware.